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Class 14 
Sec. 2.4. Convergence in measure 

 
 

 

Def.   a.e. real-valued measurable,   measurable

          in measure if 0, lim ( : ( ) ( ) ) 0

                                   or 0, 0,    ( : ( ) ( ) )

Properties:

 

n

n n
n

n

f f

f f u x f x f x

N n N u x f x f x

 

   


     

          

 

      (1) ,  in measure  a.e.

1
           Pf: : ( ) ( ) : ( ) ( )

                          |||                              |||

                                                    

n

m

f f g f g

x f x g x x f x g x
m

E

  

     
 

   

1 1
                : :   

2 2

1 1 1
                    (Reason:    )

2 2
           ( ) 0  

            ( ) 0 

m

m n n

n n

m

E

E x f f x f g n m
m m

f g f f f g
m m m

u E m

u E

              
   

        

  

 

 

 

   

n

n

       (2)  in measure  real-valued a.e.

           Pf:  Let  : ( )

                 Then  (E) ( : ( ) ) 0

                 Fix 0

                 : ( ) (( \ ) : ( ) ( )
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       (3)  in measure  in measure

       (4)  &  in measure, ,  in measure.
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            (cf. Ex. 2.4.2 (a) & (b))

       (5) ( ) ,   &  in measure  in measure

            (cf. Ex. 2.4.2 (d))
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       (6)  in measure,   in measure, g , 0 a.e. 

            | |  in measure.

             (c.f. Ex. 2.4.2 (e))
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Relatoinship between coverges a.e., almost unif. & in measure.

Thm.   almost unif.    in measure.

         Pf.  0,     ( )   &     unif. on \ .
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Cor. ( ) ,   a.e.  in measure.

        Pf. By Egoroff & above
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Note 1. In general,  a.e.   in measure.

             Ex. 

                  ,  0.

                 Then  a.e., but   in measure (Check )

         2.   in measure  
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         3.  in measure   almost unif, even if  ( ) .

            Reason: by 2.

         4.  in measure  almost unif. 
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Def.  a.e. real -valued, meas.

         Cauchy in measure if 0, ( : ( ) ( ) ) 0 as  , .

                                                    or 0, 0,    , ( :
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Note:   in measure  Cauchy in measure.
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