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Class 18 
Sec. 2.7 Properties of integrals 

   

Thm ,  int egrable, ,

      (1)  a.e. 

            Pf: directly from def.

      (2)  integrable & .

           Pf:  , integrable, simple, (a), (b) for  , , resp.
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         integrable, simple, (a), (b) for .

             integrable

           lim ( ) lim( ) .

       (3) 0 a.e. 0

           Pf:   as above.
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              integrable, simple, (a), (b) for 

                a.e. lim 0

       (4)  a.e. 

            Pf: By (2) & (3)

       (5)  integrable &   (Ex. 2.6.3)
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           Pf:  " ":   as above.

                    integrable, simple, (a), (b) for  .

                     integrable.
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Another proof:   integrable ,  integrable

                                             integrable. (" " by Thm. 2.10.1)

Easier proof for " ": Let : ( ) 0  E
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      integrable

 

1
0

Note: (1) For proper Riemann integral,   integrable  integrable.

1    if     rational 
               Ex.  ( )  on 0,1 .

1  if      irrational 

               Then 1

              1 but 
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0  not exist.    Note:   Lebesgue integrable ( 1 a.e.)f f   
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1 1

         (2) For improper Riemann integral,

                integrable  integrable  (as infinite series)

sin
              Ex. 1. ( )  on 1,

                  Then ( )  conv, but ( )

f f

x
f x

x

f x dx f x dx



 



 

 

　　

1 1
0 0

 diverge  (i.e., conditionally conv.)

1
sin

              Ex. 2. ( )   on (0,1]

                  Then ( )  conv., but ( )  diverge  (cf. Kirillov & Gvishiani, Prob. 191)

                  Not

xf x
x

f x dx f x dx



 
e: both not Lebesgue integrable

 

      (6) ( ) ,    a.e. on  ( ) ( )

           Pf:  a.e.  by (4)

                                            

                      simple,          integrable
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    (7) 0  a.e.,  

           Pf:   
E F
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      (8) 0,    integrable, : ( ) ( )  

          Motivation: ( ); but ( ) not known finite.

          Pf: ( ) : ( ) 0  -finite (Ex. 2.6.2)

                -finite
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      Let   ,  ( )  ( ) ( )
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: Trivial for simple integrable .

          Actually,   simple, integrable ( :  ( ) 0 )

f

f u x X f x    

 

 
 

1

1

Def.  ,  integrable (or in L )

          in mean (or in L ) if 0  as .

Def.   Cauchy in mean if  0  as  , .

Note:   in mean   Cauchy in mean

        Pf: " " easy.
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     " " difficult; cf. Sec. 2.8.
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Thm.  ,  integrable

         in mean  in measure.

       Pf: 0, let : ( ) ( )   

            By (g) above, ( )
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( )

                       

                        0

        ( ) 0 as .

n nm E n E n

n

f f f u E

u E n

      



  

 

Note: Similar to Lma 2.5.2.

Note: Convergence in measure: domain small:               0

         Convergence in mean: area small:            0




almost uniformly

a.e. in measure

in mean
 

Ex. 1. in measure, almost unif, a.e.  in mean. 

Then 0 a.e., but not in mean.

    &  0 almost unif.

    &  0 in measure.
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Ex.2. in mean a.e., almost unif.

Then 0 in mean, but ( ) 0 [0,1].

(similar as Ex. 2.4.5)
n nf f x x


     

Thm. 0 a.e., integrable.  (cf. Ex. 2.5.3 for simple )

    Then  0  a.e. 0    

    Pf: " ":  0  a.e. 0 0

          " ":  integrable 
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                        simple, integrable  (a)  Cauchy in mean;

                                                                         (b)   in meas.

                      simple, integ
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  rable   (c)  Cauchy in mean;

                                                                         (d)   in meas.
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n
                    lim   by def.

                         

                          0

                     i.e., 0  in mean.

                    0  in meas.

                     (b) 0  

n

n

n

f f

f

f

f

  



 

 



a.e.

Note: Next two thms are converses to each other.

 

Thm.   measure,    ( ) 0

   integrable on  & 0

Pf: 0  a.e.  integrable & 0 0

Thm.   int egrable,  0  a.e. on .

                             (or )

     If  0, then ( ) 0
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Pf: Let : ( )  for 1

     Moreover, ( )   by (8).
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Thm.  integrable, 0  0 a.e.

   Pf: Let : ( ) 0  

        Thm above ( ) 0 

        Let : ( ) 0

        By above, ( ) 0 

        0  a.e. 

Ef f E f
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Homework: Ex. 2.7.2, 2.7.3, 2.7.6 

Note: Difficult to compute ; for real-valued  on , cf. Riemann integral later.f f   

 
 
Section 2.8 
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        ,  integrable

Def.   in mean if 0  as  .

         Cauchy in mean if  0  as  , .

Note:   in mean   Cauchy in mean.

Thm 1.   integrable, Cauchy in mean   integra
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ble   in mean. 

                                                                                        (i.e., L  is complete)

Lma.  integrable, 

        simple, integrable, Cauchy in mean &  
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 a.e.

       Then   in mean.n

f

f f





 

 

Note 1:   a.e.  in mean.

Note 2: By def., 0; now stronger: 0.

Pf: Fix  1, consider 

     Then simple, integrable, Cauchy in mean, &  a.e. as 
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                             Reason: 0  as ,

By def., lim  

        lim lim  
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           i.e.,   in mean.nf f

 

Note 3:  In Lma,   a.e. replaced by    in meas.

            Conclusion:  integrable

                               simple, integrable,   

                                  a.e., or, in 
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measure, or in mean.

Note 4:   in meas.  in mean.n nf f f f  

 

 Thm 2.  integrable, Cauchy in mean, &   a.e.

           Then   integrable,   in mean. ( lim )

Pf: (1) Assume   in meas.

           Idea: replace each   by simple function, by Lma, 
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then use Lma.

1
          For each  , by Lma,  simple, integrable   

            simple, integrable, Cauchy in mean,
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2 2
1 1

              Reason: 

            &  in meas.
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Reason: Let : ( ) ( )

 integrable ( )   (by Thm.2.7.1(h))
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For 0, consider .
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   almost unif.  a.e.
k k k

n

n n n

f f

f f f f f

 
 
 
 
 
 
 
 
 
 
 
 
 

  
     



  

 

  
2

By  def.,   integrable &  in mean by Lma.

1
          

               in mean.

(2) Next assume    a.e.

      Idea: passing to subsequence & use (1)
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 Cauchy in mean

           Cauchy in meas. (proof as conv. in mean conv. in meas.)
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