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Class 18
Sec. 2.7 Properties of integrals

Thmf,g integrable, o, f e R
I)f=gae. =>[f=[g

Pf: directly from def.

(2) af + pg integrable & [af + fg=af f + S Q.

Pf: { f}.{gn}integrable, simple, (a), (b) for f, g, resp.
= {af, + gy} integrable, simple, (a), (b) for o f + Bg.
= af + fg integrable

vlaf+pBg= "rr]nj(afn +2n) = “r']’n(af fo+Blgn) =af f+plg.

3)f>0ae. =[f>0

Pf: { f,} as above.

= {| fn|} integrable, simple, (a), (b) for ||
wf=|flae. = [f :j|f|:li;nj|fn|20
4)f=>gae =[f>]g

Pf: By (2) & (3)

(5) | f| integrable & |[ f|<[|f| (Ex.2.6.3)
g

f integrable

Pf: "=" { f,} as above.
= {| fn|} integrable, simple, (a), (b) for |f|.
~.| | integrable.
|l ful < ]
\2 \2
IRIIL
Another proof: f integrable < f*,f ™ integrable

< | f| integrable. (" <" by Thm. 2.10.1)

Easier proof for "«<": Let E ={x: f(x) >0} = f " = yg|f|= f integrable
Note: (1) For proper Riemann integral, f integrable:>|f| integrable.
&=

1 if x rational o
-1 if x irrational

Ex. f(x)= { n [0,1].
Then |f|=1

jé|f|=1 but jéf not exist. Note: f Lebesgue integrable (. f =-1a.e.)
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(2) For improper Riemann integral,
f integrable —|f| integrable (as infinite series)
=

Ex.1.f(x)= % on [1,:0)

Then [° f (x)dx conv, but [{°|f (x)|dx diverge (i.e., conditionally conv.)

sin1
Ex. 2.f(x)=—=2 on (0,1]
X

Then j(l) f (x)dx conv., but j(1)| f (x)|dx diverge (cf. Kirillov & Gvishiani, Prob. 191)
Note: both not Lebesgue integrable

(6)u(E) <o, m<f <M ae.on E=mu(E)<[g f <Mu(E)
Pl wmye < fre <Mypae =[cm<[cf<[M by(4)
1 T
simple, integrable
(7)f 20 ae,EcFea=[f< [ f
PRl e & e e Pl i il df

(8)m>0, f integrable, E ={x:|f(x)|=m}= u(E) <
Motivation: o > [ g | f|> [ g m=mu(E); but u(E) not known finite.
Pf: -~Ec N(f)={x: f(x)#0} o-finite (Ex. 2.6.2)
= E o-finite
LetEjea > E; TE, u(Ej) <o Vj =u(Ej) Tu(E)
oo>jE|f|2jEj | f|=mu(E;) > mu(E)

T & 1
(| f] integrable,;(E|f|z;(Ej |f|2m‘ZEj)
= U(E)<w
Note: Trivial for simple integrable f.
Actually, f simple, integrable = u({x e X : f(x)#0}) <

Def. { f,}, f integrable (or in L

f, — f inmean (or in L) if [| f,—f| >0 asn — oo,
Def. { f,} Cauchyinmeanif [|f,—f|—>0 as n,m— .
Note: f, — f inmean < { f,} Cauchy in mean

Pf. " =" easy.
" <" difficult; cf. Sec. 2.8.
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Thm.{ f,}, f integrable
fo = f inmean = f, — f in measure.
Pf: Ve >0, let Ey ={x:|f(x)— f(X)|2 ¢ }
By (g) above, u(Ep,) <

N
= fm| 2T g [fa— f|2T g, & =6u(En)
\
0
= U(E,) >0asn— .
Note: Similar to Lma 2.5.2.
Note: Convergence in measure: domain small: L 4r=>0
Convergence in mean: areasmall:  Jj —0

S X
Cae) o Cinmessre

Rk 4

Ex. 1. in measure, almost unif, a.e. = in mean. —2
Then f, — 0 a.e., but not in mean. L :

: |

& f, — 0almost unif. |

]

|
|
|
|
]
& f,, = 0 in measure. 0 101210 231
fl f2 fS
Ex.2. in mean = a.e., almost unif.
Then f,, — 0 in mean, but f,(x) - 0 Vx €[0,1]. ! v | 1
(similar as Ex. 2.4.5) i o ,
Thm. f >0 a.e., integrable. (cf. Ex. 2.5.3 for simple f) 0 10 10
Then f =0 ae.<[f=0
Pf."=": - f=0ae. =[f=[0=0
"<" - f integrable

- 3 {f,} simple, integrable > (a) { f,}Cauchy in mean;
(b) f, > f in meas.
= { | fn|}simple, integrable > (c) { |f,|} Cauchy in mean;

(d) |fo|—>|f]|=f in meas.
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[ f=lim[[fy] by def.
n

I
0

ie, f, >0 in mean.
= f, > 0 in meas.
(b) = f =0 ae.
Note: Next two thms are converses to each other.
Thm. f measure, E€ca > u(g)=0
= f integrableonE & [ f =0
Pf: - ycf =0 ae. = yf integrable & [ f =[0=0
Thm. f integrable, f >0 a.e.onE €a.
(or <)
If [¢f=0,thenu(E)=0

Pf: LetEn:{XGE: f(x)zi} forn>1
n

Moreover, u(E,) < by (8).
/

Alef2fg f z%u(En)zo

[
0

=Uu(E,)=0 Vvn
ThenE, T UE,
n
~U(E,) Tu(UE,) =u(E)
n
=u(E)=0
Thm. f integrable, [ f =0 VEca= f =0a.e.
Pf: Let E = {x: f (x) >0}
Thm above = u(E) =0
Let F ={x: f(x) <0}
By above, u(F)=0

= f =0 ae.

Homework: Ex. 2.7.2, 2.7.3, 2.7.6
Note: Difficult to compute | f; for real-valued f on IR, cf. Riemann integral later.

Section 2.8



R R i R

{ f,}, f integrable
Def. f, — f inmeaniif [|f,—f| >0 as n—> .
{ fn} Cauchy in mean if [|f,—f,|—>0 as n,m— .
Note: f, — f inmean = { f,} Cauchy in mean.
Thm 1. { f,} integrable, Cauchy in mean = 3 f integrable > f, — f in mean.
(i.e., L% is complete)
Lma. f integrable,
{ f,} simple, integrable, Cauchy in mean & f, — f a.e.
Then f, — f in mean.

Note 1: f, —» f a.e.= f, —> f in mean.
Note 2: By def,, [ f —[ f —0; now stronger: f| f, —f| — 0.
Pf: Fix n>1, consider {| fy~ |}
Then simple, integrable, Cauchy in mean, & |f, — )| > |~ f| ae.asm —>
T
Reason: J|[fy — f|~| fn = fi]| < J|fm — fi| >0 asm,l o0
By def., Iinrjnj|fn — f| =[] fn — |

clim | fo = fi| = lim ]| f, |
n,m n

0
le., f, — f in mean.
Note 3: InLma, f, —> f a.e. replaced by f, — f in meas. 3
Conclusion: f integrable By ’ 5
<3 f, simple, integrable, > f, — f b = —i e

a.e., or, in measure, or in mean.
Note 4: f, — f in meas.=% f,, — f in mean.

Thm 2. {f,} integrable, Cauchy in mean, & f, — f a.e.
Then f integrable, f, > f inmean. (= lim[ f, =] f)
m

Pf: (1) Assume f, — f in meas.
Idea: replace each f,, by simple function, by Lma, then use Lma.
1

For each f,,, by Lma, 3 simple, integrable T, > jﬁn ~fol <=
n

{ fn } simple, integrable, Cauchy in mean,
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c o f -1 1
Reason: | fy = fia| < 1| = |+ 1| fr = |+ [ 0 = fm\sn—2+(c:+F

& f, > f in meas.

Reason: Let E, = {x: f(x)- fn(x)‘ > %}

f,— f,| integrable = u(E,) <o (by Thm.2.7.1(h))
1 .
Xey S ey T =T
1 z : 1
jﬁu(En)SJ.En fn_ fn SJ. fn_ fn <F

1
=Uu(E,)<——>0 asn—-wo
n

) 1
For ¢ >0, consider n > —.
&

.-.{x:‘fn—fn‘Zg}g{X:‘fn—fn‘Z%}
.'.,u({x:‘fn—fn‘z(’;})éy({x:‘fn—fn‘z%})—)Oasn—)oo

- f, = f, = 0 in meas.
+ f, = f in meas.

- f, = f in meas.

=3f, > f, - f almostunif.= f, — f ae.

.. By def., f integrable&fnk — f in mean by Lma.
= = = = 1
[l — San—fn‘ﬂ‘fn—fnk‘ﬂ‘fnk—f|3n—2+8+€

= f, > f inmean.
(2) Nextassume f, > f a.e.
Idea: passing to subsequence & use (1)
~+{fn} Cauchy in mean

= {f,} Cauchy in meas. (proof as conv. in mean = conv. in meas.)



