Class 18

Sec. 2.7 Properties of integrals

Thm f, g integrable, $\alpha, \beta \in \mathbb{R}$ (1)f = g a.e. $\Rightarrow \int f = \int g$ Pf: directly from def. (2) $\alpha f + \beta g$ integrable & $\left[\alpha f + \beta g = \alpha \right] f + \beta \left[g \right]$. Pf: $\{f_n\}, \{g_n\}$ integrable, simple, (a), (b) for f, g, resp. $\Rightarrow \{ \alpha f_n + \beta g_n \}$ integrable, simple, (a), (b) for $\alpha f + \beta g$. $\Rightarrow \alpha f + \beta g$ integrable $\because \int \alpha f + \beta g = \lim_{n} \int (\alpha f_n + \beta g_n) = \lim_{n} (\alpha \int f_n + \beta \int g_n) = \alpha \int f + \beta \int g_n.$ (3) $f \ge 0$ a.e. $\Rightarrow \int f \ge 0$ Pf: $\{f_n\}$ as above. $\Rightarrow \{ |f_n| \}$ integrable, simple, (a), (b) for |f| $\therefore f = |f| \text{ a.e.} \Rightarrow \int f = \int |f| = \lim \int |f_n| \ge 0$ $(4) f \ge g \text{ a.e.} \Longrightarrow \int f \ge \int g$ Pf: By (2) & (3) (5) |f| integrable & $|\int f| \le \int |f|$ (Ex. 2.6.3) € f integrable Pf: " \Rightarrow ": { f_n } as above. $\Rightarrow \{ |f_n| \}$ integrable, simple, (a), (b) for |f| $\therefore |f|$ integrable. $:: \left| \int f_n \right| \le \int \left| f_n \right|$ $|J f| \quad \int |f|$ Another proof: f integrable $\Leftrightarrow f^+, f^-$ integrable $\Leftrightarrow |f|$ integrable f^+

Easier proof for " \Leftarrow ": Let $E = \{x : f(x) \ge 0\} \Rightarrow f^+ = \chi_E |f| \Rightarrow f^+$ integrable

Note: (1) For proper Riemann integral, f integrable $\Rightarrow |f|$ integrable.

Ex.
$$f(x) = \begin{cases} 1 & \text{if } x \text{ rational} \\ -1 & \text{if } x \text{ irrational} \end{cases}$$
 on [0,1].
Then $|f| \equiv 1$
 $\therefore \int_{0}^{1} |f| = 1$ but $\int_{0}^{1} f$ not exist. Note: f Lebesgue integrable ($\because f = -1$ a.e.)

(2) For improper Riemann integral,

$$f \text{ integrable } \underset{\Rightarrow}{\leftarrow} |f| \text{ integrable (as infinite series)}$$

Ex. 1. $f(x) = \frac{\sin x}{x}$ on $[1,\infty)$

Then $\int_{1}^{\infty} f(x) dx$ conv, but $\int_{1}^{\infty} |f(x)| dx$ diverge (i.e., conditionally conv.)

Ex. 2.
$$f(x) = \frac{\sin \frac{1}{x}}{x}$$
 on (0,1]

Then $\int_0^1 f(x) dx$ conv., but $\int_0^1 |f(x)| dx$ diverge (cf. Kirillov & Gvishiani, Prob. 191) Note: both not Lebesgue integrable

(6)
$$u(E) < \infty$$
, $m \le f \le M$ a.e. on $E \Rightarrow mu(E) \le \int_E f \le Mu(E)$
Pf: $\because m\chi_E \le f\chi_E \le M\chi_E$ a.e. $\Rightarrow \int_E m \le \int_E f \le \int_E M$ by (4)
 \uparrow \uparrow
simple, integrable
(7) $f \ge 0$ a.e., $E \subseteq F \in a \Rightarrow \int_E f \le \int_F f$
Pf: $\because \chi_E \le \chi_F \Rightarrow \chi_E f \le \chi_F f \Rightarrow \int_E f \le \int_F f$
(8) $m > 0$, f integrable, $E = \{x : |f(x)| \ge m\} \Rightarrow u(E) < \infty$
Motivation: $\infty > \int_E |f| \ge \int_E m = mu(E)$; but $u(E)$ not known finite.
Pf: $\because E \subseteq N(f) = \{x : f(x) \ne 0\} \ \sigma$ -finite (Ex. 2.6.2)
 $\Rightarrow E \ \sigma$ -finite
Let $E_j \in a \ \Rightarrow E_j \uparrow E$, $u(E_j) < \infty \ \forall_j \Rightarrow u(E_j) \uparrow u(E)$
 $\infty > \int_E |f| \ge \int_{E_j} |f| \ge mu(E_j) \rightarrow mu(E)$
 $\uparrow \uparrow \uparrow \uparrow \uparrow$
 $(\because |f| \text{ integrable, } \chi_E |f| \ge \chi_{E_j} |f| \ge m \cdot \chi_{E_j})$
 $\Rightarrow u(E) < \infty$

Note: Trivial for simple integrable f.

Actually, *f* simple, integrable $\Rightarrow u(\{x \in X : f(x) \neq 0\}) < \infty$

Def. $\{f_n\}, f$ integrable (or in L¹)

 $f_n \to f$ in mean (or in L¹) if $\int |f_n - f| \to 0$ as $n \to \infty$. Def. $\{f_n\}$ Cauchy in mean if $\int |f_n - f_m| \to 0$ as $n, m \to \infty$. Note: $f_n \to f$ in mean $\Leftrightarrow \{f_n\}$ Cauchy in mean Pf: " \Rightarrow " easy. " \Leftarrow " difficult; cf. Sec. 2.8.

$$\therefore \int f = \lim_{n} \int |f_n| \text{ by def.}$$

$$\parallel 0$$
i.e., $f_n \to 0 \text{ in mean.}$

$$\Rightarrow f_n \to 0 \text{ in meas.}$$
(b) $\Rightarrow f = 0 \text{ a.e.}$

Note: Next two thms are converses to each other.

Thm.
$$f$$
 measure, $E \in a \ni u(E) = 0$
 $\Rightarrow f$ integrable on $E \& \int_E f = 0$
Pf: $\because \chi_E f = 0$ a.e. $\Rightarrow \chi_E f$ integrable $\& \int_E f = \int 0 = 0$
Thm. f integrable, $f > 0$ a.e. on $E \in a$.
(or <)
If $\int_E f = 0$, then $u(E) = 0$
Pf: Let $E_n = \left\{x \in E : f(x) \ge \frac{1}{n}\right\}$ for $n \ge 1$
Moreover, $u(E_n) < \infty$ by (8).
 \checkmark
 $\therefore \int_E f \ge \int_{E_n} f \ge \frac{1}{n} u(E_n) \ge 0$
 \parallel
 0
 $\Rightarrow u(E_n) = 0 \quad \forall n$
Then $E_n \uparrow \bigcup E_n$
 $\therefore u(E_n) \uparrow u(\bigcup E_n) = u(E)$
 $\Rightarrow u(E) = 0$
Thm. f integrable, $\int_E f = 0 \quad \forall E \in a \Rightarrow f = 0$ a.e.
Pf: Let $E = \{x : f(x) > 0\}$
Thm above $\Rightarrow u(E) = 0$
Let $F = \{x : f(x) < 0\}$
By above, $u(F) = 0$
 $\Rightarrow f = 0$ a.e.

Homework: Ex. 2.7.2, 2.7.3, 2.7.6 Note: Difficult to compute $\int f$; for real-valued f on \mathbb{R} , cf. Riemann integral later.

Section 2.8

Def. $f_n \to f$ in mean if $\int |f_n - f| \to 0$ as $n \to \infty$. $\{f_n\}$ Cauchy in mean if $\int |f_n - f_m| \to 0$ as $n, m \to \infty$. Note: $f_n \to f$ in mean $\Rightarrow \{f_n\}$ Cauchy in mean. Thm 1. $\{f_n\}$ integrable, Cauchy in mean $\Rightarrow \exists f$ integrable $\Rightarrow f_n \rightarrow f$ in mean. (i.e., L^1 is complete) Lma. f integrable, $\{f_n\}$ simple, integrable, Cauchy in mean & $f_n \to f$ a.e. Then $f_n \to f$ in mean. Note 1: $f_n \to f$ a.e. $\Rightarrow f_n \to f$ in mean. Note 2: By def., $\int f_n - \int f \to 0$; now stronger: $\int |f_n - f| \to 0$. Pf: Fix $n \ge 1$, consider $\{|f_n - f_m|\}_m$ Then simple, integrable, Cauchy in mean, & $|f_n - f_m| \rightarrow |f_n - f|$ a.e. as $m \rightarrow \infty$ $\therefore \lim_{n,m} |f_n - f_m| = \lim_n |f_n - f|$ i.e., $f_n \rightarrow f$ in mean. Note 3: In Lma, $f_n \to f$ a.e. replaced by $f_n \to f$ in meas. Conclusion: f integrable $\Leftrightarrow \exists f_n \text{ simple, integrable, } \ni f_n \to f$ a.e., or, in measure, or in mean. Note 4: $f_n \to f$ in meas. $\Rightarrow f_n \to f$ in mean. Thm 2. $\{f_n\}$ integrable, Cauchy in mean, & $f_n \rightarrow f$ a.e. Then f integrable, $f_n \to f$ in mean. $(\Rightarrow \lim \int f_n = \int f)$ Pf: (1) Assume $f_n \to f$ in meas.

 $\{f_n\}, f$ integrable

Idea: replace each f_n by simple function, by Lma, then use Lma. For each f_n , by Lma, \exists simple, integrable $\tilde{f}_n \Rightarrow \int |\tilde{f}_n - f_n| < \frac{1}{n^2}$

 $\therefore \{\tilde{f}_n\}$ simple, integrable, Cauchy in mean,

$$\begin{split} \hline & \left[\begin{array}{c} \operatorname{Reason:} \left| \left| \tilde{f}_n - \tilde{f}_m \right| \leq j \left| \tilde{f}_n - f_n \right| + j \left| f_n - f_m \right| + j \left| f_m - \tilde{f}_m \right| \leq \frac{1}{n^2} + \varepsilon + \frac{1}{m^2} \right. \\ & \& \tilde{f}_n \to f \text{ in meas.} \\ \hline & \left[\operatorname{Reason:} \operatorname{Let} E_n = \left\{ x : \left| \tilde{f}_n (x) - f_n (x) \right| \geq \frac{1}{n} \right\} \\ & \left| \tilde{f}_n - f_n \right| \text{ integrable} \Rightarrow u(E_n) < \infty \text{ (by Thm 2.7.1(h))} \\ & \ddots \chi_{E_n} \frac{1}{n} \leq \chi_{E_n} \left| \tilde{f}_n - f_n \right| \\ & \Rightarrow \frac{1}{n} u(E_n) \leq j_{E_n} \left| \tilde{f}_n - f_n \right| \leq j \left| \tilde{f}_n - f_n \right| < \frac{1}{n^2} \\ & \Rightarrow u(E_n) \leq \frac{1}{n} \to 0 \quad \text{as } n \to \infty \\ \hline & \left(x : \left| \tilde{f}_n - f_n \right| \geq \varepsilon \right) \leq \left(x : \left| \tilde{f}_n - f_n \right| \geq \frac{1}{n} \right) \\ & \therefore \mu(\left\{ x : \left| \tilde{f}_n - f_n \right| \geq \varepsilon \right\}) \leq \mu(\left\{ x : \left| \tilde{f}_n - f_n \right| \geq \frac{1}{n} \right\}) \to 0 \text{ as } n \to \infty \\ \hline & \left(\tilde{f}_n - f_n \right) \geq \varepsilon \right) \leq \mu(\left\{ x : \left| \tilde{f}_n - f_n \right| \geq \frac{1}{n} \right\}) \to 0 \text{ as } n \to \infty \\ & \therefore \tilde{f}_n - f_n \to 0 \text{ in meas.} \\ & + f_n \to f \text{ in meas.} \\ & \Rightarrow \exists \tilde{f}_{n_k} \ni \tilde{f}_{n_k} \to f \text{ almost unif.} \Rightarrow \tilde{f}_{n_k} \to f \text{ a.e.} \\ & \therefore \text{ By def., } f \text{ integrable & } \tilde{f}_{n_k} \to f \text{ in mean.} \\ & \therefore f_n - f(x) = \int |f_n - \tilde{f}_n| + \int |\tilde{f}_n - \tilde{f}_{n_k}| + \int |\tilde{f}_{n_k} - f| \leq \frac{1}{n^2} + \varepsilon + \varepsilon \\ & \Rightarrow f_n \to f \text{ in mean.} \\ & \therefore f(x + y) = \int |f_n - f(x)| + f(x) - f(x)| + \int |f_n - f(x)| + \int |f_n - f(x)| + f(x) - f(x)| + \varepsilon + \varepsilon \\ & \Rightarrow f_n \to f \text{ in mean.} \\ & (2) \text{ Next assume } f_n \to f \text{ a.e.} \\ \text{ Idea: passing to subsequence & use (1) \\ & \because \{f_n\} \text{ Cauchy in mean} \\ & \Rightarrow \{f_n\} \text{ Cauchy in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (2) \text{ Next and } (x + y) \text{ in mean.} \\ & (3) \text{ in me$$