Class 18

Sec. 2.7 Properties of integrals

Pf: $\{f_n\}, \{g_n\}$ integrable, simple, (a), (b) for f, g, resp. Thm f, g integrable, $\alpha, \beta \in \mathbb{R}$ $(1) f = g$ a.e. \Rightarrow $\int f = \int g$ Pf: directly from def. (2) $\alpha f + \beta g$ integrable & $\int \alpha f + \beta g = \alpha \int f + \beta \int g$. $\Rightarrow \{\alpha f_n + \beta g_n\}$ integrable, simple, (a), (b) for $\alpha f + \beta g$. Pf: $\{f_n\}$ as above. $\Rightarrow \alpha f + \beta g$ integrable : $\int \alpha f + \beta g = \lim_{n} \int (\alpha f_n + \beta g_n) = \lim_{n} (\alpha f_n + \beta f g_n) = \alpha f + \beta f g$. $(3) f \ge 0$ a.e. \Rightarrow $\int f \ge 0$ \Rightarrow { $|f_n|$ } integrable, simple, (a), (b) for $|f_n|$ $\therefore f = |f|$ a.e. \Rightarrow $\int f = \int |f| = \lim_{n} \int |f_n| \ge 0$ $(4) f \geq g$ a.e. $\Rightarrow \int f \geq \int g$ Pf: By (2) & (3) (5) $|f|$ integrable & $|f| \le |f|$ (Ex. 2.6.3) integrable *f* - ↑ Pf: $\Box \Rightarrow \Box$: { f_n } as above. \Rightarrow { $|f_n|$ } integrable, simple, (a), (b) for $|f|$. \therefore *f* integrable. $n \geq 1 | J_n$ \therefore $| \int f_n | \leq \int | f_n$ ↓ ↓ ↓ Another proof: f integrable $\Leftrightarrow f^+f^-$ integrable $f \qquad \lceil f \rceil$ *f* integrable $\Leftrightarrow f^+$, *f* $+$ $+$ $\int f$ \int \Leftrightarrow

 \Leftrightarrow |f| integrable. (" \Leftarrow " by Thm. 2.10.1) *f* \Leftrightarrow |f| integrable. (" \Leftarrow

 ${x : f(x) \ge 0}$ Easier proof for " \Leftarrow ": Let $E = \{x : f(x) \ge 0\} \Rightarrow f^+ = \chi_E |f| \Rightarrow f^+$ $E = \{x : f(x) \ge 0\} \Rightarrow f^+ = \chi_E |f| \Rightarrow f$ $+ - \alpha$ $|\mathbf{f}| \rightarrow \mathbf{f}^+$ Easier proof for " \Leftarrow ": Let $E = \{x : f(x) \ge 0\} \Rightarrow f^+ = \chi_E |f| \Rightarrow f^+$ integrable

Note: (1) For proper Riemann integral, f integrable \Rightarrow $|f|$ integrable. \neq \Rightarrow

Ex.
$$
f(x) = \begin{cases} 1 & \text{if } x \text{ rational} \\ -1 & \text{if } x \text{ irrational} \end{cases}
$$
 on [0,1].
Then $|f| = 1$
 $\therefore \int_0^1 |f| = 1$ but $\int_0^1 f$ not exist. Note: f Lebesgue integrable ($\because f = -1$ a.e.)

(2) For improper Riemann integral,

f integrable
$$
\Leftarrow |f|
$$
 integrable (as infinite series)
 \Rightarrow
Ex. $1.f(x) = \frac{\sin x}{x}$ on $[1,\infty)$

x $=\frac{\sin x}{x}$ on $[1,\infty]$

Then $\int_1^{\infty} f(x)dx$ conv, but $\int_1^{\infty} |f(x)|dx$ diverge (i.e., conditionally conv.)

Ex. 2.
$$
f(x) = \frac{\sin \frac{1}{x}}{x}
$$
 on (0,1]

 $1_{f(x)}dx$ conv but 1 Then $\int_0^1 f(x)dx$ conv., but $\int_0^1 f(x)|dx$ diverge (cf. Kirillov & Gvishiani, Prob. 191) Not e: both not Lebesgue integrable

(6)
$$
u(E) < \infty
$$
, $m \le f \le M$ a.e. on $E \Rightarrow mu(E) \le \int_E f \le Mu(E)$
\nPf: $\therefore m\chi_E \le f\chi_E \le M\chi_E$ a.e. $\Rightarrow \int_E m \le f \le f \le M$ by (4)
\n \uparrow
\nsimple,
\nintegrable
\n(T) $f \ge 0$ a.e., $E \subseteq F \in \mathbf{a} \Rightarrow \int_E f \le \int_F f$
\nPf: $\therefore \chi_E \le \chi_F \Rightarrow \chi_E f \le \chi_F f \Rightarrow \int_E f \le \int_F f$
\n(8) $m > 0$, f integrable, $E = \{x : |f(x)| \ge m\} \Rightarrow u(E) < \infty$
\nMotivation: $\infty > \int_E |f| \ge \int_E m = mu(E)$; but $u(E)$ not known finite.
\nPf: $\therefore E \subseteq N(f) = \{x : f(x) \ne 0\}$ σ -finite (Ex. 2.6.2)
\n $\Rightarrow E \sigma$ -finite
\nLet $E_j \in \mathbf{a} \Rightarrow E_j \uparrow E$, $u(E_j) < \infty \forall j \Rightarrow u(E_j) \uparrow u(E)$
\n $\infty > \int_E |f| \ge \int_{E_j} |f| \ge mu(E_j) \rightarrow mu(E)$
\n $\uparrow \qquad \uparrow$
\n $(\because |f| \text{ integrable}, \chi_E |f| \ge \chi_{E_j} |f| \ge m \cdot \chi_{E_j})$
\n $\Rightarrow u(E) < \infty$

Note: Trivial for simple integrable f .

Actually, f simple, integrable $\Rightarrow u({x \in X : f(x) \neq 0}) < \infty$

Def. $\{f_n\}$, *f* integrable (or in L¹)

Def. $\{f_n\}$ Cauchy in mean if $\left| \int_{r_n} - f_m \right| \to 0$ as $n, m \to \infty$. Note: $f_n \to f$ in mean $\Leftrightarrow \{f_n\}$ Cauchy in mean $f_n \to f$ in mean (or in L¹) if $\left| \int_{n}^{-} f \right| \to 0$ as $n \to \infty$. Pf: " \Rightarrow " easy. " \Leftarrow " difficult; cf. Sec. 2.8.

$$
\therefore \int f = \lim_{n} \int |f_n| \text{ by def.}
$$

||
0
i.e., $f_n \to 0$ in mean.
 $\Rightarrow f_n \to 0$ in meas.
(b) $\Rightarrow f = 0$ a.e.

Note: Next two thms are converses to each other.

Thm. measure, () 0 *f E uE* **a** integrable on & 0 *f Ef E* Pf: 0 a.e. integrable & 0 0 *ff f EE E* Thm. int egrable, 0 a.e. on . *f fE* **a** (or) If 0, then () 0 *f uE E* ¹ Pf: Let : () for 1 *E x E fx n n n* Moreover, () by (8). *u E n* 1 () 0 *f f uE EE n n n* 0 () 0 *uE n* n Then *E E n n ⁿ* () (*uE u E ⁿ u E*) () n *n* () 0 *u E* Thm. integrable, 0 0 a.e. *^E f fE f* **a** Pf: Let : () 0 *E x fx* Thm above () 0 *u E* Let : () 0 *F xfx* By above, () 0 *u F* 0 a.e. *f*

Homework: Ex. 2.7.2, 2.7.3, 2.7.6 Note: Difficult to compute $\int f$; for real-valued f on \mathbb{R} , cf. Riemann integral later.

Section 2.8

 $\{f_n\}$, *f* integrable Def. $f_n \to f$ in mean if $\left| \int_{n}^{-} f \right| \to 0$ as $n \to \infty$. $\{f_n\}$ Cauchy in mean if $\left| \int_{0}^{n} f_n - f_m \right| \to 0$ as $n, m \to \infty$. Note: $f_n \to f$ in mean \Rightarrow { f_n } Cauchy in mean. Thm 1. $\{f_n\}$ integrable, Cauchy in mean $\Rightarrow \exists f$ integrable $\Rightarrow f_n \rightarrow f$ in mean. $(i.e., L¹$ is complete) Lma. f integrable, ${f_n}$ simple, integrable, Cauchy in mean & $f_n \to f$ a.e. Then $f_n \to f$ in mean. Note 1: $f_n \to f$ a.e. $\Rightarrow f_n \to f$ in mean. Note 2: By def., $\int f_n - \int f \to 0$; now stronger: $\int |f_n - f| \to 0$. Pf: Fix $n \ge 1$, consider $\left\{ |f_n - f_m| \right\}_m$ Then simple, integrable, Cauchy in mean, $\& |f_n - f_m| \rightarrow |f_n - f|$ a.e. as $f_n - f_m$ \rightarrow $|f_n - f|$ a.e. as $m \rightarrow \infty$ $|J_n - J_m| \rightarrow |J_n|$ <u>↑</u> $\int ||f_n - f_m| - |f_n - f_l|| \leq \int |f_m - f_l| \to 0$ as $m, l \to \infty$ Reason: $\iiint_{n} -f_{m} - f_{l} \leq ||f_{m} - f_{l}|| \leq ||f_{m} - f_{l}|| \to 0$ as m, $f_n - f_m - |f_n - f_l| \le |f_m - f_l| \to 0$ as m, l $n = J_m$ $\vert - \vert J_n - J_l \vert \vert \leq 1 \vert J_m - J_l \vert$ By def., $\lim_{n} \left| \int_{n} H_{m} \right| = \left| \int_{n} -f \right|$ $\int |f_n - f_m| = \int |f_n$ $f_n - f_m = \int |f_n - f|$ \lim_{m} $|J_n - J_m| = |J_n|$ $\therefore \lim_{n,m} \left| \left| f_n - f_m \right| \right| = \lim_{n} \left| \left| f_n - f \right| \right|$, $\overline{\mathsf{I}}$ $\sqrt{2}$ 0 i.e., $f_n \to f$ in mean. m - 3명 S.M Note 3: In Lma, $f_n \to f$ a.e. replaced by $f_n \to f$ in meas. **Conclusion:** f integrable $\Leftrightarrow \exists f_n \text{ simple, integrable, } \exists f_n \rightarrow f$ a.e., or, in measure, or in mean. Note 4: $f_n \to f$ in meas. $\Rightarrow f_n \to f$ in mean. Thm 2. $\{f_n\}$ integrable, Cauchy in mean, & $f_n \to f$ a.e. Then *f* integrable, $f_n \to f$ in mean. ($\Rightarrow \lim_{m} \int f_n = \int f$) Pf: (1) Assume $f_n \to f$ in meas.

Idea: replace each f_n by simple function, by Lma, then use Lma.

 \tilde{f} θ For each f_n , by Lma, \exists simple, integrable $\widetilde{f}_n \ni \iint \widetilde{f}_n - f_n \leq \frac{1}{n^2}$ *n* \exists simple, integrable $f_n \rightarrow \int |f_n - f_n|$

 $\therefore \{\tilde{f}_n\}$ simple, integrable, Cauchy in mean,

Reson:
$$
|\tilde{f}_n - \tilde{f}_m| \leq |f_n - f_n| + |f_n - f_m| + |f_n - \tilde{f}_m| \leq \frac{1}{n^2} + \varepsilon + \frac{1}{m^2}
$$

\n& $\tilde{\mathcal{E}}_n \to f$ in meas.
\n
\nReson: Let $E_n = \left\{ x : |\tilde{f}_n(x) - f_n(x)| \geq \frac{1}{n} \right\}$
\n $|\tilde{f}_n - f_n|$ integrable ⇒ $u(E_n) < \infty$ (by Thm.2.7.1(h))
\n $\therefore \mathcal{X}_{E_n} \frac{1}{n} \leq \mathcal{X}_{E_n} |\tilde{f}_n - f_n|$
\n $\Rightarrow \frac{1}{n} u(E_n) \leq |f_{E_n}|\tilde{f}_n - f_n| \leq |f_n - f_n| < \frac{1}{n^2}$
\n $\Rightarrow u(E_n) \leq \frac{1}{n} \to 0$ as $n \to \infty$ |
\n
\nFor $\varepsilon > 0$, consider $n > \frac{1}{\varepsilon}$.
\n $\therefore \{x : |\tilde{f}_n - f_n| \geq \varepsilon\} \subseteq \left\{ x : |\tilde{f}_n - f_n| \geq \frac{1}{n} \right\}$
\n $\therefore \mu(\{x : |\tilde{f}_n - f_n| \geq \varepsilon\}) \leq \mu(\{x : |\tilde{f}_n - f_n| \geq \frac{1}{n}\}) \to 0$ as $n \to \infty$
\n $\therefore \tilde{f}_n - f_n \to 0$ in meas.
\n $\Rightarrow \tilde{f}_n \to f$ in meas.
\n $\Rightarrow \tilde{f}_n \to \tilde{f}_n$ means.
\n $\Rightarrow \tilde{f}_n \to \tilde{f}_n$ means.
\n $\Rightarrow \tilde{f}_n \to \tilde{f}_n$ almost unit. $\Rightarrow \tilde{f}_n \to f$ a.e.
\n \therefore By def., *f* integrable & $\tilde{f}_n \to f$ in mean by Lma.
\n \therefore $$