## Class 2

## Chap.1. Measure theory

X set

 $\{E_n\}$  subsets of X

Def. 
$$\overline{\lim} E_n = \left\{ x \in X : x \text{ belongs to infinitely many } E_n \text{ 's} \right\}$$
$$= \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} E_n$$

 $\underline{\lim} E_n = \left\{ x \in X : x \text{ belongs to all but finitely many } E_n \text{'s} \right\}$   $= \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} E_n.$ 

Note:  $\underline{\lim} E_n \subseteq \overline{\lim} E_n$ 

Def.  $\{E_n\}$  has a limit if  $\underline{\lim}E_n = \overline{\lim}E_n$ In this case, let  $\lim E_n = \text{this set}$ 

Ex. 
$$E_n = \begin{cases} A & \text{if } n \text{ even} \\ B & \text{if } n \text{ odd.} \end{cases}$$

Then  $\overline{\lim} E_n = A \cup B$ ,  $\underline{\lim} E_n = A \cap B$ .

 $\therefore \lim_{n \to \infty} E_n = A = B$ 

Analogue: a,b,a,b,... Then limit exists  $\Leftrightarrow a=b$ 

Properties:

$$(1) \underline{\lim} E_n \subseteq \overline{\lim} E_n$$

$$\bigcup_{n} \qquad \bigcap_{n} E_n$$

(2) 
$$(\underline{\lim}E_n)^c = \overline{\lim}E_n^c$$
 (Ex.1.1.1)  
 $(\overline{\lim}E_n)^c = \underline{\lim}E_n^c$ 

(3) 
$$E_n \subseteq E_{n+1} \ \forall_n \Rightarrow \lim_n = \bigcup_n E_n$$
. (analogue:  $a_n \uparrow \& \text{ bdd above } \Rightarrow \lim_n a_n \text{ exists } \&= \sup_n a_n$ .)
$$E_n \supseteq E_{n+1} \ \forall_n \Rightarrow \lim_n E_n = \bigcap_n E_n$$
.

$$(4) E \subseteq X$$

Def. 
$$\chi_E(x) = \begin{cases} 1 \text{ if } x \in E \\ 0 \text{ if } x \notin E \end{cases}$$

characteristic func. of E

$$\chi_E: X \to \mathbb{R}$$

$$\overline{\lim} \chi_{E_n} = \chi \overline{\lim}_{E_n}$$
 (Ex.2.1.7)

$$\underline{\lim}\chi_{E_n} = \chi\underline{\lim}_{E_n}$$

(5)  $\lim E_n$  exists  $\Leftrightarrow \lim \chi_{E_n}$  exists.

Def.  $\wp(X)=\{\text{all subsets of }X\}: \text{ power set of }X$ 

Def.  $R \subseteq \wp(X)$  ring if

- (1)  $\phi \in R$
- (2)  $A, B \in R \implies A \setminus B \in R \text{ (Def. A}\setminus B = \{x \in X \& x \notin B\})$
- (3)  $A, B \in R \implies A \cup B \in R$ .

Properties of ring R:

$$(1) A_1, ..., A_n \in R \implies \bigcup_{i=1}^n A_i \in R$$

(2) 
$$A, B \in R \implies A \cap B \in R$$
  
Pf:  $A \cap B = A \setminus (A \setminus B) \in R$ .

$$(3) A_1,...,A_n \in R \implies \bigcap_{i=1}^n A_i \in R$$

Def. R is an algebra if R ring &  $X \in R$ 

(4)R ring

Define 
$$A + B = A\Delta B$$

$$A \cdot B = A \cap B$$
.

Then  $(R, \Delta, \cap)$  is an (algebraic) ring.

(cf. J.B. Wilker, Rings of sets are really rings, Amer. Math. Monthly,89 (1982), 211)



$$(1) \phi \in R$$

$$(2) A, B \in R \implies A \backslash B \in R$$

$$(3) A_1, A_2 \dots \in R \implies \bigcup_{n=1}^{\infty} A_n \in R$$

Def. R  $\sigma$ -algebra if R  $\sigma$ -ring &  $\in$  R

Note: In prob. theory, elements in R are "events";  $X = \{\text{all outcomes}\}\$ 

Ex. Toss a dice:  $X = \{1, 2, ..., 6\}$   $R = \wp(X)$ 

Note: 
$$\sigma$$
-ring  $\Rightarrow$  ring  $\sigma$ -algebra  $\Rightarrow$  algebra

Properties of  $\sigma$ -ring R:

$$(1) A_1, A_2, \dots \in R \Rightarrow \bigcap_{n=1}^{\infty} A_n \in R. \text{ (Ex.1.1.3)}.$$

$$\text{Let } A = A_1 \cup A_2 \cup \dots \in R$$

$$\text{Pf. } \bigcap_n A_n = A \setminus \bigcup_n (A \setminus A_n) \in R.$$

$$(2) A_1, A_2, \dots \in R \Rightarrow \overline{\lim} A_n, \underline{\lim} A_n \in \mathbb{R}. (Ex.1.1.3).$$

Thm 1. 
$$R$$
 is a ring  $\Leftrightarrow \phi \in R$ ;

$$A, B \in R \implies A \backslash B \in R$$
;

$$A, B \in R, A \cap B = \phi \Rightarrow A \cup B \in R.$$

$$A \cup B = (A \setminus B) \cup B$$



Thm 2. R is an algebra  $\Leftrightarrow \phi \in R$ ;

$$A, B \in R \implies A \cup B \in R;$$

$$A \in R \Rightarrow A^{c} \in R$$
.

$$A \setminus B = A \cap B^c = (A^c \cup B)^c \in R$$
$$\& X = \phi^c \in R$$



Thm 3. R is a  $\sigma$ -ring  $\Leftrightarrow \phi \in R$ ;

$$A, B \in R \implies A \backslash B \in R;$$
  
 $\{A_n\} \in R$ , mutually disjoint  $\Longrightarrow \bigcup_n A_n \in R$ 

Thm 4. R is a  $\sigma$ -algebra  $\Leftrightarrow \phi \in R$ ;

$$A, B \in R \implies A \setminus B \in R;$$
  
 $\{A_n\} \subseteq R$ , mutually disjoint  $\Rightarrow \bigcup_n A_n \in R$   
 $X \in R.$ 

$$D \subseteq \wp(X)$$

Let  $R_0$  be the intersection of all rings containing D.

Note1. intersection of rings is a ring

- 2.  $\exists$  ring  $\wp(X)$  which contains D.
- $\Rightarrow R_0$  is the smallest ring containing D.

Def.  $R_0$  ring generated by D, denoted by R(D): .top-down; buttom-up: perform  $\cup, \cap, \setminus$  repeatelly on elements of D. Similarly for  $\sigma$ -ring, algebra,  $\sigma$ -algebra.

Ex. 
$$X = \mathbb{R}$$

$$D = \{ [0,2], [1,3] \} \qquad [0,2] \setminus [1,3] \quad [1,3] \setminus [0,2]$$

Then 
$$R(D) = \{ \phi, [0,2], [1,3], [0,1), (2,3], [1,2], [0,3], [0,1) \cup (2,3] \}$$

 $\sigma$ -ring generated by D = R(D)  $[0,2] \cap [1,3]$   $[0,2] \cup [1,3]$  algebra generated by  $D = R(D) \cup \{\mathbb{R}, (-\infty,0) \cup (2,\infty),...\}$   $\sigma$ -algebra generated by D=algebra generated by  $D \cup \ldots$ 

S CONTINUE SOUND

Homework: Ex.1,1.8, 1.1.9