Class 32

Note:
$$(\mathbb{R}^n, L^n, (dx)^n)$$
 σ -finite $(\mathbb{R}^k, L^k, (dx)^k)$ $\Rightarrow (\mathbb{R}^n \times \mathbb{R}^k, L^n \times L^k, (dx)^n \times (dx)^k)$ $\| \int (\mathbb{R}^{n+k}, L^{n+k}, (dx)^{n+k})$ Then (1) $\{ \text{Borel sets in } \mathbb{R}^{n+k} \}_{\neq}^{-k} L^n \times L^k \subset L^{n+k} \}_{\neq}^{-k} L^n \times L^k \subset L^{n+k}$ (Ex.2.15.4) (Ex.2.15.5) (2) $(dx)^{n+k} | \{ \text{Borel sets in } \mathbb{R}^{n+k} \}, (dx)^n \times (dx)^k, (dx)^{n+k} \text{ agree on common domains (Ex.2.15.6)}$ (3) $(dx)^{n+k}$ is the completion of $(dx)^n \times (dx)^k$. (i.e., u, μ complete $\Rightarrow u \times \mu$ complete) (Ex.2.15.7)

Homework: Ex.2.15.2, 2.15.4, 2.15.5, 2.15.8

Assume
$$(X \times Y, \alpha \times \beta, u \times \mu)$$
 σ -finite $h: X \times Y \rightarrow [-\infty, \infty], x \in X$

Def.
$$h_X(y) = h(x, y)$$
: $Y \to [-\infty, \infty]$
 x -section of h

Similarly, y-section of
$$h: h^y$$

Lma.
$$h$$
 meas. on $(X \times Y, \alpha \times \beta, u \times \mu)$

$$\Rightarrow h_X, h^Y$$
 meas. on Y, X , resp. $\forall x \in X, y \in Y$

Pf: Check:
$$h_x^{-1}(O) \in \beta \ \forall \text{open } O \in \mathbb{R}'$$

$$\{z \in Y : h_{x}(z) \in O\}$$

$$\|$$

$$\{z \in Y : h(x, z) \in O\}$$

$$\|$$

$$\{z \in Y : (x, z) \in h^{-1}(O)\}$$

$$\|$$

$$h^{-1}(O)_{x} \in \beta \ (\because h^{-1}(O) \in \alpha \times \beta)$$

$$(i.e., h_{x}^{-1}(O) = h^{-1}(O)_{x})$$
Also,
$$h_{x}^{-1}(\{\infty\}), h_{x}^{-1}(\{-\infty\}) \in \beta$$

$$\|$$

$$h^{-1}(\{\infty\})_{x}$$

Tonelli's Thm: $(X, \alpha, u), (Y, \beta, \mu)$ σ -finite

$$h: X \times Y \rightarrow [0,\infty]$$
 meas. on $X \times Y$

Then $(1) f(x) = \int h_x d\mu$ meas. on X;

- (2) $g(y) = \int h^y du$ meas. on Y;
- (3) $\int hd(u \times \mu) = \int \underbrace{(\int h^y du)}_{g} d\mu = \int \underbrace{(\int h_x d\mu)}_{f} du \ (\leq \infty; \text{ may not be integrable})$

(double integral) (iterated integrals)

Pf: (a) $h = \chi_E$ for some $E \in \alpha \times \beta$

Then $f(x) = \int (\chi_E)_x d\mu = \int \chi_{E_x} d\mu = \mu(E_x)$ meas. (by Thm. in preceding section)

$$g(y) = u(E^y)$$
 meas.

&
$$\int g d\mu = \int f du$$
 (by Thm)

$$=(u \times \mu)(E)$$
 (by def)

$$= \int hd(u \times \mu)$$

(b) $h \ge 0$, simple meas.

Then, by linearity.

(c) $h \ge 0$, meas.

Let $0 \le h_n \uparrow h$, h_n simple meas.

$$MCT \Rightarrow \int h_n d(u \times \mu) \uparrow \int h d(u \times \mu)$$

$$\therefore 0 \le h_{nx} \uparrow h_x$$

$$MCT \Rightarrow \int h_{nx} d\mu \uparrow \int h_x d\mu$$

$$0 \le f_n(x) \qquad f(x)$$

$$\Rightarrow f$$
 meas., i.e., (1) holds.

 $MCT \Rightarrow \int f_n du \uparrow \int f du$

Similarly for g:(2) holds & $\int g_n d\mu \uparrow \int g d\mu$

(b) \Rightarrow (3) holds