Class5

Ex. (Ex.1.4.1) Let
$$K = \{\phi, X, \text{ singletons}\};$$

 $\lambda(\phi)=0, \lambda(X) = \#X, \lambda(E)=1 \text{ if } E \text{ singleton.}$
Then $u^*(A)=\#A$; outer measure
 $a = \wp(X); \quad \sigma\text{-algebra}$
 $\therefore u^*$ measure on $\wp(X)$ (counting measure); measure.

Homework: Ex.1.4.4, 1.4.5

Sec. 1.5.

Thm. *u* measure on *a*

- (1) Let $\overline{a} = \{E \cup N : E \in a, N \subseteq A, \text{ where } A \in a \& u(A) = 0\} \implies \overline{a} :\supseteq a \}$ Then $\overline{a} \sigma$ -algebra
- (2) Let $\overline{u}(E \cup N) = u(E)$ for $E \cup N \in \overline{a}$. Then \overline{u} complete measure on a. $(\Rightarrow \overline{u} | a = u)$

Note: Other construction of \overline{a} : $E \setminus N$ (Ex.1.5.2) or $E \Delta N$

Pf. (1):
$$\phi = \phi \cup \phi \in \overline{a}$$

Check: $E \cup N \in \overline{a} \Rightarrow (E \cup N)^c \in \overline{a}$.
Say, $E \in a$, $N \subseteq A \in a$, $u(A) = 0$.
 $\therefore (E \cup N)^c = E^c \cap N^c = E^c \setminus N = (E^c \setminus A) \cup N' \in \overline{a}$.
 $\cap \cap \cap a$
 $a = A$
Check: $E_n \cup N_n \in \overline{a} \Rightarrow \cup (E_n \cup N_n) \in \overline{a}$
 $\cap \cap \cap a$
 $a = A$
Check: $E_n \cup N_n \in \overline{a} \Rightarrow \cup (E_n \cup N_n) \in \overline{a}$
 $(\bigcup_{k=0}^n \cup (\bigcup_{k=0}^n \cup ($

 \mathbb{R}^2

x

Homework: Ex.1.5.1, 1.5.2

Sec. 1.6. Lebesgue measure

(1) Lebesgue measure on \mathbb{R}^n :

 \mathbb{R}^{n}

 $K = \{ bdd open intervals in \mathbb{R}^n \} \cup \{ \phi \}$ sequential covering class.

 λ (bdd open interval) = its volume.

 $\Rightarrow u^* \text{ Lebesgue outer measure}$ u Lebesgue measure (complete) on a $\rightarrow \text{ Lebesgue measurable subets of } \mathbb{R}^n$ may prove intervals are Lebesgue measurable} $\rightarrow \text{ need topolog ical consideration}$

(2) Lebesgue-Stieltjes measure on \mathbb{R} :

Let $f : \mathbb{R} \to \mathbb{R}$ be \uparrow & right conti. \mathbb{R}

$$K = \{(a,b]: a < b \in \mathbb{R}\} \cup \{\phi\} \text{ sequential covering class}$$
$$\lambda((a,b]) = f(b) - f(a).$$

 $\Rightarrow u^*$ Lebesgue-Stieltjes outer measure

 u_f Lebesgue-Stieltjes outer measure

(complete) on
$$a_f \& u_f((a,b]) = f(b) - f(a)$$
 (Ex. 1.9.13)

Note: If $K = \{(a,b)\}, \lambda((a,b)) = f(b) - f(a)$ Then $u_f((a,b)) \le f(b) - f(a)$. (Ex. 1.9.15)

$$\operatorname{Ex1.} f(x) = x$$

Then u_f Lebesgue measure.

Ex2. $f(x) = [x] \uparrow \&$ right conti.

Then u_f is defined on $a_f \ni u_f(E)$ =no. of integers in E.

Reason:
$$u_f((\frac{1}{2},3]) = [3] - [\frac{1}{2}] = 3 - 0 = 3$$

 \mathcal{U}_{f}

J Note:

For certain u, let $f(x) = u((-\infty, x])$ (distribution function)

Then $f \uparrow \&$ right conti.

Homework: Ex.1.6.3

[0,1)

 $\|\|$ \mathbb{R} E

Thm. $E \subseteq \mathbb{R} \rightarrow E$ not Lebesgue measurable. i.e. In (1) above, $a \subsetneq \wp(\mathbb{R})$

 $x, y \in [0, 1)$

Def. $x \equiv y$ if x - y rational

Then" \equiv " equiv. relation.

: Axiom of choice

 \Rightarrow *F* = set formed by taking 1 element from each equiv. class

Check: *F* not Lebesgue measurable.

Assume F Lebesgue measurable

u Lebesgue measure on \mathbb{R} :

(1) $u(\{a\})=0.$ (Ex.1.6.1)

Easy: by (3)

(2) $u(\{a_1, a_2, ...\})=0$ (Ex.1.6.2)

: countable subadditivity

(3) u([a,b]) = b - a (Ex.1.6.3)

Need: Heine-Borel thm.

(4) u((a,b))=u((a,b))=u([a,b))=b-a (Ex.1.6.4).

Easy

(5) *E* Lebesgue measurable, $a \in \mathbb{R} \Rightarrow a + E$ Lebesgue measurable & u(a + E) = u(E).

