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Homework: Ex.1.4.4, 1.4.5 
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Thm.  measure on 
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Note: Other construction of :  \  (Ex.1.5.2) or E N E Na  
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Homework: Ex.1.5.1, 1.5.2 

 

Sec. 1.6. Lebesgue measure 
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Thm.     not Lebesgue measurable.

         i.e. In (1) above, ( )
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 Lebesgue measure on :

(1) ( )=0.    (Ex.1.6.1)

     Easy: by (3)

(2) ( , ,... )=0          (Ex.1.6.2)

    countable subadditivity

(3) ([ , ])            (Ex.1.6.3)

     Need: Heine-Borel thm.
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