Class5

Ex. (Ex.1.4.1) Let
$$
K = \{\phi, X, \text{ singletons}\};
$$

\n $\lambda(\phi)=0, \lambda(X) = \#X, \lambda(E)=1 \text{ if } E \text{ singleton.}$
\nThen $u^*(A)=\#A$; outer measure
\n $\alpha = \wp(X); \qquad \sigma\text{-algebra}$
\n $\therefore u^*\text{measure on } \wp(X) \text{ (counting measure); measure.}$

Homework: Ex.1.4.4, 1.4.5

Sec. 1.5.

 $(X, \boldsymbol{\alpha}, u)$ measure space. Def. *u* is complete if $E \in \mathbf{a}$, $u(E) = 0$, $N \subseteq E \implies N \in \mathbf{a}$. Note: *u* constructed from outer measure *u*^{*} is complete Pf. Check: $u^*(A) \ge u^*(A \setminus N) + u^*(A \cap N)$ $\forall A$ $\land \land \leftarrow: u^*$ monotone \bigcirc \bigcirc \bigcirc \bigcirc $u^*(E)$ $\mathbf{u} \leftarrow \mathbf{u}^* | \mathbf{a} = \mathbf{u}$ $u(E)=0$ **set** *X* set λ , $K \subseteq \wp(X)$ sequential convering class outer measure \overline{u} u^* $\wp(X)$ \sim / \sim 07 measure *u* **a** complete measure *u* **a** Ex. $\boldsymbol{\alpha} = \{ \boldsymbol{\phi}, X \}$: $\boldsymbol{\sigma}$ -algebra \mathbb{R}^n $u(\phi) = u(X) = 0$ Then *u* measure, not complete, if $#A \geq 2$ Thm \Rightarrow $\mathbf{a} = \wp(X)$ $u \equiv 0.$

Thm. u measure on \boldsymbol{a}

- (1) Let $\mathbf{a} = \{ E \cup N : E \in \mathbf{a}, N \subseteq A, \text{ where } A \in \mathbf{a} \& u(A)=0 \} \iff \mathbf{a} \geq \mathbf{a}$ Then α σ -algebra
- (2) Let $u(E \cup N) = u(E)$ for $E \cup N \in \mathbf{a}$. Then *u* complete measure on \boldsymbol{a} . $(\Rightarrow u | \boldsymbol{a} = u)$

Note: Other construction of \overline{a} : $E \setminus N$ (Ex.1.5.2) or *E* ΔN

Pf. (1):
$$
\psi = \phi \cup \phi \in \overline{a}
$$

\nCheck: $E \cup N \in \overline{a} \implies (E \cup N)^c \in \overline{a}$.
\nSay, $E \in a$, $N \subseteq A \in a$, $u(A)=0$.
\n $\therefore (E \cup N)^c = E^c \cap N^c = E^c \setminus N = (E^c \setminus A) \cup N' \in \overline{a}$.
\nCheck: $E_a \cup N_a \in \overline{a} \implies \bigcup (E_a \cup N_a) \in \overline{a}$
\nCheck: $\overline{E_a} \cup N_a \in \overline{a} \implies \bigcup (E_a \cup N_a) \in \overline{a}$
\n $\bigcup_{(x, y) \in (x, y) \in (x, y)} \bigcup_{(y, y) \in (x, y)}$

 \mathbb{R}^2

0 \overrightarrow{x}

Homework: Ex.1.5.1, 1.5.2

Sec. 1.6. Lebesgue measure

(1) Lebesgue measure on \mathbb{R}^n :

n

 $K = \left\{ \text{bdd open intervals in } \mathbb{R}^n \right\} \cup \left\{ \phi \right\}$ sequential covering class.

 λ (bdd open interval) = its volume.

 $\Rightarrow u^*$ Lebesgue outer measure Lebesgue measure (complete) on *u* **a** \rightarrow Lebesgue measurable subets of \mathbb{R}^n may prove intervals are Lebesgu e measurable \rightarrow need topo log ical consideration

(2) Lebesgue-Stieltjes measure on \mathbb{R} :

Let $f : \mathbb{R} \to \mathbb{R}$ be $\uparrow \&$ right conti. \mathbb{R}

$$
K = \{(a, b] : a < b \in \mathbb{R}\} \cup \{\phi\}
$$
 sequential covering class.

$$
\lambda ((a, b]) = f(b) - f(a).
$$

 $\Rightarrow u^*$ Lebesgue-Stieltjes outer measure

 u_f Lebesgue-Stieltjes outer measure

(complete) on
$$
a_f
$$
 & u_f ((a,b]) = $f(b) - f(a)$ (Ex. 1.9.13)

Note: If $K = \{(a, b)\}\$, $\lambda((a, b)) = f(b) - f(a)$ Then $u_f((a, b)) \le f(b) - f(a)$. (Ex. 1.9.15)

$$
\operatorname{Ex1.} f(x) = x
$$

Then u_f Lebesgue measure.

Ex2. $f(x) = [x]$ \uparrow & right conti.

Then u_f is defined on $a_f \to u_f(E)$ =no. of integers in E.

$$
\text{Reason: } u_f\left((\frac{1}{2},3]\right) = [3] \cdot \left[\frac{1}{2}\right] = 3 \cdot 0 = 3
$$
\n
$$
f \left(\frac{u_f}{v}\right) = \frac{u_f}{v}
$$

Note:

For certain u, let $f(x) = u((-\infty, x])$ (distribution function)

Then $f \uparrow \& \text{right conti.}$

Homework: Ex.1.6.3

Thm. $E \subseteq \mathbb{R} \to E$ not Lebesgue measurable. i.e. In (1) above, $\boldsymbol{a} \subsetneq \wp(\mathbb{R})$

 $x, y \in [0,1)$

Def. $x \equiv y$ if $x - y$ rational

Then" \equiv " equiv. relation.

∴ Axiom of choice

 \Rightarrow *F* = set formed by taking 1 element from each equiv. class

Check: F not Lebesgue measurable.

Assume *F* Lebesgue measurable

 u Lebesgue measure on \mathbb{R} :

 $(1) u({a})=0.$ (Ex.1.6.1)

Easy: by (3)

 $(2) u({a_1,a_2,...})=0$ (Ex.1.6.2)

: countable subadditivity

 $(3) u([a,b]) = b - a$ (Ex.1.6.3)

Need: Heine-Borel thm.

- (4) $u((a,b))=u((a,b])=u([a,b))=b-a$ (Ex.1.6.4). Easy
- (5) E Lebesgue measurable, $a \in \mathbb{R} \Rightarrow a + E$ Lebesgue measurable & $u(a + E) = u(E)$.

