\mathcal{A} I R R R Ω

Class 53

 $\{0\}$

X

 $=X^*$

 $^{\perp}$ – \mathbf{v}^*

 $(10) \{0$

X normed space over $F = R$ or C Def. $\langle \cdot, \cdot \rangle: X \times X^* \to F$ (outer product) \Rightarrow $\langle x, x^* \rangle = x^* (x)$ Then (1) $\langle ax + by, x^* \rangle = a \langle x, x^* \rangle + b \langle y, x^* \rangle$. $(2) \langle x, ax^* + by^* \rangle = a \langle x, x^* \rangle + b \langle x, y^* \rangle$ (bilinear) (3) $\left\langle x, x^* \right\rangle \leq \|x\| \cdot \|x^*\|$ (Schwarz \leq) $(4) x = 0 \Leftrightarrow \langle x, x^* \rangle = 0 \,\forall x^* \in X^*$ $Pf.: " \leftarrow " by (2) on p.19$ $(5) x^* = 0 \Leftrightarrow \langle x, x^* \rangle = 0 \,\forall x \in X$ Note: Difference with inner product in Hilbert space: $(2) \leftrightarrow \langle z \rangle$ $\langle ax + by \rangle = \overline{a} \langle z, x \rangle + b \langle z, y \rangle$ (sesquilinear) 1 1 2 $S \subseteq X$, subset Def. $S^{\perp} = \left\{ x^* \in X^* : x^*(x) = 0 \,\forall x \in S \right\}$ (ortho. complement of S) $S^* \subseteq X^*$ Def. $S^{* \perp} = \{x \in X : x^*(x) = 0 \,\forall x^* \in S^* \}$ (ortho. complement of S^*) Properties: $(1) \forall S \subseteq X, S^{\perp}$ closed subspace of X^* $(2) \forall S^* \subseteq X^*$, $S^{*\perp}$ closed subspace of X. **MARIO** (3) $S \subseteq T \subseteq X \Rightarrow T^{\perp} \subseteq S^{\perp}$ (4) $S^* \subseteq T^* \subseteq X^* \Rightarrow T^{*+} \subseteq S^{*+}$ $(5) \ \forall S \subseteq X, (S^{\perp})^{\perp}$ = closed linear span of S (Let $T =$ losed linear span of S $\therefore S \subseteq T \Rightarrow S^{\perp} \supseteq T^{\perp} \Rightarrow (S^{\perp})^{\perp} \subseteq (T^{\perp})^{\perp} = T$, if *T* is a closed subspace) (6) $\forall S^* \subseteq X^*, (S^{*\perp})^{\perp}$ = closed linear span of S^* (7) $X^{\perp} = \{0\} \subseteq X^*$ (by (5) above) $(8) X^{*\perp} = \{0\} \subseteq X$ (by (4) above) \perp $= X$ (9) ${0}^{\perp} = X$
 (by (3), (4), (5), (6)) *X* $\{0\}$ $\left\{ \right.$

Sec.4.9 Dirichlet problem:

Find *u* on $\Omega \subseteq R^n$ a

$$
\begin{cases}\n\text{V}u = \sum_{j=1}^{n} \frac{\partial^2 u}{\partial x^2} = 0 \text{ on } \Omega \text{ (Laplace equation)}\\
u = f \text{ on } \partial\Omega\n\end{cases}
$$

Thm. When $n = 2$ & under certain conditions on Ω , Green's func. exists.

Pf.: Use Hahn-Banach Thm

(Ex.4.9.2) any solu. u to Dirichlet problem can be expressed as an integral of f & Green's function

Sec.4.10. Reflexive spaces Spaces: duality theory (Sec. $4.8 \sim 4.14$): Hahn-Banach Thm Operators: spectral theory (Chap.5, 6): compact,normal. Thm. *X* normed space X^* separable \Rightarrow *X* separable Ł Note: 1. " \neq ": *l* separable, but $l^{1*} \cong l^{\infty}$ nonsep. $\ell_{\ell-1}$ 2. This says " X^* larger than X " l^1 sep. (Ex.3.1.6): $\{(x_1,...,x_n,0,...): n \ge 1, x_i$'s rational dense in l^1 Reason: $\{(x_1, ..., x_n, 0, ...) : n \ge 1, x_j \text{ is rational}\}$ dense in *l* $S_0 + S_0 + S_0 + ... = S_0 + S_0 + ... = S_0$: $\aleph_0 + \aleph_0 \cdot \aleph_0 + ... = \aleph_0 + \aleph_0 + ... = \aleph$ l^{∞} nonsep. (Ex.3.1.7): Reason: $\{(x_1, x_2, ...) : x_j \text{ is rational}\}$ dense in l^{∞} $\aleph_0 \cdot \aleph_0 ... = \aleph_0^{\aleph_0} \geq 2^{\aleph_0} = \aleph_1 > \aleph_0$ Pf.: Let $\{x_n^*\}$ dense in X^* $\left\| x_{n}^{*} \right\| = \sup_{\| x \| = 1} \left| x_{n}^{*} (x) \right| > \frac{1}{2} \left\| x_{n}^{*} \right\|$ if $x_{n}^{*} \neq 0$ \therefore $||x_n^*|| = \sup |x_n^*(x)| > \frac{1}{2}||x_n^*||$ if $x_n^* \neq$ (x) $=$ \Rightarrow $\exists x_n \in X \; \ni \; ||x_n|| = 1 \; \& \; |x_n^*(x_n)| \geq \frac{1}{2}$ \Rightarrow $\exists x_n \in X$ \Rightarrow $||x_n|| = 1 \& \left|x_n^*(x_n)\right| \geq \frac{1}{2} ||x_n^*||$ (In Hilbert space, this means x_n^* & x_n close to each other)

Let $A = \{\text{finite linear combinations of } x_n \text{ with rational coeffi.}\}\$ Then A countable

 Check: . *A X* Assume *A X* Cor.4.8.7 0 0 *x xy yA* dense in *x X n* in norm *x xx n n k k* 1 0 *x x x x x xx x x x n nn nn n n n* 2 *k kk kk k k k* || 1 0 in norm *x n k x* 0 Reflexivity: *XX X* : ˆ *kx x* i.e., , , ˆ ˆ *x x xx x X xx x x x X* similar to inner product Note: always Banach space (by Thm 4.4.4) *X* Thm. normed space. *X* Then : isometric isom. from into & if Banach space, *kX X X X X* then is closed in *kX X* Pf: Check: (1) bdd linear functional on (). ˆ ˆˆ *x X xx x x x x* (2) linear *k* (3) : *x x* ˆ sup sup ˆ ˆ *x x x xx x x x x* 1 1 || 1 (p.153, Cor.4.8.6) (4) closed in if Banach space *kX X X* ** in Pf: Assume ˆ *x yX n* if , large ˆ ˆ *x x x x nm nm nm* in *x xX n* in ˆ ˆ *x xX n* But ˆ *x y n*

 \Rightarrow $y = \hat{x} \in kX$

Another proof: $kX \cong X$ Banach space $\Rightarrow kX$ closed in X^{**}

Application:

Thm. *X* normed space

$$
\{x_{\alpha}\} \subseteq X
$$

Then
$$
\{|x^*(x_{\alpha})|\} \text{bdd } \forall x^* \in X^* \implies \{|x_{\alpha}|\} \text{bdd}
$$

Note: " \Leftarrow " trivial

Pf.: Apply uniform bddness principle to $\{ \hat{x}_{\alpha}: X^* \to F \}$ ($\because X^*$ Banach space)

Then
$$
\left\{ \left| \hat{x}_{\alpha} \left(x^* \right) \right| \right\}
$$
bdd $\forall x^* \in X^* \Rightarrow \left\{ \left\| \hat{x}_{\alpha} \right\| \right\}$ bdd $\left\| x^* \left(x_{\alpha} \right) \right\|$ $\left\| x \right\|$

Def. *X* normed space is reflexive if $k(X) = X^{**}$

(i.e., $X \cong X^{**}$ under the natural embedding k) isometric isom.

Note 1. *X* reflexive \Rightarrow *X* Banach space

Note 2. *X* reflexive $\Rightarrow X \cong X^{**}$ ∉

Ex. X finite-dim normed space \therefore dim $X^* = \dim X^* = \dim X \Rightarrow k : X \to X^{**} 1-1 \Rightarrow$ must be onto) ** \leftarrow dim V^* \rightarrow dim $V \rightarrow$ \leftarrow $V \cdot V$ ↓ \therefore dim X^* = dim X^* = dim $X \Rightarrow k: X \to X^{**}$ 1-1 \Rightarrow

 e_1 ,..., e_n basis of X. Let x_i (e_j) 1 if Let $e_1, ..., e_n$ basis of X. Let $x_i^*(e_j) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$ $\overline{\mathcal{L}}$

AILILILO

1 Then x_1^* , ..., x_n^* basis of X^*

l^{*p*} reflexive iff $1 < p < \infty$

 $1, l^{\infty}, C[a,b]$ $c_0, l^1, l^{\infty}, C[a, b]$ not reflexive Hilbert spaces are reflexive

Prop 1. *X* reflexive

Then X separable if X^* separable.

Pf.: " \Rightarrow " $\therefore X \cong X^{**}$ separable

 \Rightarrow *X*^{*} separable

" \Leftarrow " proved before.

Prop 2. *X*, *Y* normed spaces

Then $X \cong Y$

(isometric isom.)

Then X reflexive \Leftrightarrow Y reflexive

Pf. Omitted