Class 59

Let
$$I' = \left\{ \hat{f}^* : f^* \in B \right\} \subseteq I$$

Check: I' compact ($\Rightarrow B \cong I'$)

Check: I' closed (:: closed subset of compact I is compact)

Let $\eta \in \overline{I}'$

Check: $\exists f_0^* \in B \ni \eta = \hat{f}_0^*$

Let
$$f_0^*: X \to F$$
 be $\ni f_0^*(x) = \eta_x$

 $:: \exists \hat{f}_n^* \to \eta$ in product top.

$$\Rightarrow f_n^*(x) \rightarrow \eta_x \ \forall x \in X$$

(i) Check: f_0^* linear

$$\begin{array}{c} \therefore \lambda_{1}x_{n}^{*}(x_{1}) \to \lambda_{1}\eta_{x_{1}} \\ \lambda_{2}x_{n}^{*}(x_{2}) \to \lambda_{2}\eta_{x2} \end{array} \right\} \to \lambda_{1}x_{n}^{*}(x_{1}) + \lambda_{2}x_{n}^{*}(x_{2}) \to \lambda_{1}\eta_{x_{1}} + \lambda_{2}\eta_{x_{2}} = \lambda_{1}f_{0}^{*}(x_{1}) + \lambda_{2}f_{0}^{*}(x_{2}) \\ \parallel \\ x_{n}^{*}(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \to \eta_{\lambda_{1}x_{1} + \lambda_{2}x_{2}} = f_{0}^{*}(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \end{array}$$

(ii) Check:
$$\left\|f_0^*\right\| \le 1$$
: $\left|f_0^*\left(x\right)\right| = \left|\eta_x\right| \le \left\|x\right\| \ (\because \eta \in \overline{I} ' \subseteq I) \Rightarrow f_0^* \in B$

(iii) Check:
$$\hat{f}_n^* = \eta$$

$$\therefore f_0^* = \left\{ f_0^*(x) \right\} = \left\{ \eta_x \right\} = \eta$$

$$\Rightarrow \eta \in I'$$

$$\therefore \overline{I}' = I' \text{ is closed}$$

Thm. 4.12.3. Note: This is for general K insteady of ball

X separable normed space

Then the following are equiv.: (1) $K \subseteq X^*$ weakly sequen. compact;

(2) *K* bdd & weakly closed;

(3) K weakly compact.

Note: Generalize Bolzano-Weierstiass thm for dim $X < \infty$.

Pf.: $(1) \Rightarrow (2)$ as before for any normed space

 $(2) \Rightarrow (3)$ by Alaoglu thm & for any normed space

(3)
$$\Rightarrow$$
 (1): Let $\{y_n\}$ dense in X
Consider $\{K \cap N\left(z^*; y_{k_1}, ..., y_{k_n}, \frac{1}{m}\right)\}$ nbd base at $z^* \in K$

∵ countable

 \therefore K first countable (i.e. countable nbd base at each point of K)

 $\therefore K$ weakly compact \Rightarrow weakly sequentially compact

Homework:

Sec.4.12, Ex.2,5

(Thm. 4.11.5)

Note: More generally, X first countable top. space, $K \subseteq X$

Then K compact $\Rightarrow K$ sequentially compact

