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Class 7 
*Thm.  metric outer measure on metric space (X, ) 

       closed (open) sets are measurable.

Note: " " true (cf. Ex.1.8.1)
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Pf. of Thm.

       Let  be closed set

Check: ( ) ( ) ( \ )   

   Note: ( , \ ) may not be 0, replace \  by smaller 

            \  open
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*Cor.  metric outer measure

       Borel sets are measurable.

   Pf. Borel sets 

        measurable sets 

        Then closed sets .

          Borel sets .
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Homework: Ex.1.8.1, 1.8.3, 1.8.4 

 

Sec.1.9. Construction of metric outer measure 

 

   ( , ) metric space

 sequential convering class

1
:  ( )  for 1.

Assume  is a sequential convering class.
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Note. In general, false.

    Ex. , 1 :  in .K n n n     
 

   
Ex.  or  

      = open intervals

      Then K  sequential convering class .
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 : 0,  , ( )=0. Then | : 0, .

1
Let  outer measure w.r.t. , , i.e., ( ) inf ( ) : ( )  ,    

Note: 1. 
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Thm.   metric outer measure.

Pf: (1) :  ( ) 0,

     (2) ( ) lim ( ) 0.
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     (4) Countable subadditivity:

     Let     

     ( ) ( ) ( )

              

          ( )        

         outer measure

    (5) Assume ( , ) 0.

    Check: ( )+u
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   Let   &  0,  completing the proof.
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     metric space

                outer measure

    |        

          |    metric outer measure

Question:   ?
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                sequential covering class 1                                  Note.

Thm. , >0, 1                                                            conditions on  & 
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         Then =

Note: condition holds for  or            (Ex.1.9.3)

          Lebesgue metric outer measure ( Sec.1.9)

         Borel sets are Lebesgue measurable  (Sec.1.8)
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