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Def. Lebesgue measurable subets of      ( from measure theory)

       Borel subsets of                               ( from topology)

       Lebesgue measurable on 
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Relations between & :

Def. 0,1 \ ( ...)     (cf. Ex. 1.9.12)

       Cantor set
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Properties:

    (1)  bdd & closed compact & Borel

             ( intersection of closed sets)

1 2 4 2
    (2) ( ) 0  Pf:  ( ) 1 ... 1 0
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Set Theory: study number of elements of infinite set 

                     || 

                  cardinality 

G. Cantor (1845-1918) 
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        ,  sets

Def. # #  if    :   1 1 & onto

       # #  if    :   1 1

Def. ( # ) (# ) #( ) (disjoint union of  & )

        ( # ) (# ) #( )

       # # :

       #

       #

Thm. 1
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Thm. 2. # #  & # #   # #  (Schroder-Bernstein)

Thm. 3. # 2

Thm. 4.  infinite set  has a subset   # #

Thm. 5.  infinite set  has a subset   # #

Thm. 6. 2
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 Note: 1. specific sets in \  difficult to give. (typical for modern analysis)

          2.  |  not complete. Reason:  subsets of , not in . ( #2 =2 # )

          3.  is the completion of |
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. (see below)
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* * *

Thm 1.   (cf. Royden, p. 62)

            Then 0,  open   ( \ )

      Pf. " "(Ex. 1.9.7)

           " " Check: ( ) ( ) ( \ )  
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Thm 2. 

            Then 0,   closed   ( \ )

      Pf. " " 

                  Apply Thm 3 to  open   ( \ )

                    ( \ ) ( \ ) ( \ )
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                      closed  

           " " Check: 
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 c  by reversing above arguments.L

 

Thm 3. 

            Then ,  where ,  & ( ) 0

      Pf. " " trivial

            " " (Ex. 1.9.8)
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Note.1.  is the completion of  |   & =

         2. Thm's 1-3 true for n
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Littlewood principles  (Royden, p. 72, Sec. 3.6)

Principle I: ~
n

i
i

A L A I


  
 

 

*

*
1

1

Thm 4. ,  ( ) .       (Royden, p. 63)

            Then >0,   finite open intervals  ( ( ))

      Pf. " ":

              Thm 1 0 ,  open   ( \ )
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Note: ,  open , where  disjoint open intervals.

      Pf. " ": trivial

           " ": 

           Define ~   if    for , .

           Then"~" equivalence relation.
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h equivalence class is an open interval

          

           Correspond each  to different rational no. in .
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" " as in Thm 1.
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Homework: Ex 1.9.7, 1.9.14, 1.9.15 

 

C

A

nF

N


