Class 8

Def. $L = \{$ Lebesgue measurable subets of $\mathbb{R} \}$ (\rightarrow from measure theory)

 $B = \{$ Borel subsets of $\mathbb{R} \}$ (\rightarrow from topology)

T TAwe

 $m =$ Lebesgue measurable on \mathbb{R}

Relations between L&B:

Def.
$$
C = [0,1] \setminus (I_1 \cup I_2 \cup I_3 \cup ...)
$$
 (cf. Ex. 1.9.12)
 Cantor set

0 1 9 2 9 1 3 2 3 7 9 8 9 1 I_2 I_1 I_3

Properties:

(1) C bdd & closed \Rightarrow compact & Borel

 \cdots intersection of closed sets)

(2)
$$
m(C) = 0
$$
 Pf: $\therefore m(C) = 1 - \frac{1}{3} - \frac{2}{9} - \frac{4}{27} - ... = 1 - \sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n} = 0$

Set Theory: study number of elements of infinite set

 || cardinality G. Cantor (1845-1918) A, B sets Def. $#A = #B$ if $\exists f : A \rightarrow B$ 1-1 & onto $#A \leq #B$ if $\exists f : A \rightarrow B$ 1-1 Def. $(\# A) + (\# B) = \#(A \cup B)$ (disjoint union of A & B) $(\# A) \cdot (\# B) = \#(A \times B)$ $#A^{*B} = #\{f : B \rightarrow A\}$ RIOS $\aleph_0 = \# \mathbb{N}$ $\aleph_1^{}=\#\mathbb{R}$ Thm. 1. $\# \wp(A) = 2^{\# A}$ Thm. 2. $#A \leq #B \& #B \leq #A \Rightarrow #A = #B$ (Schröder-Bernstein) Thm. 3. $#A < 2^{#A}$ Thm. 4. A infinite set \Leftrightarrow A has a subset C \Rightarrow # $A = \#C$ Thm. 5. A infinite set \Leftrightarrow A has a subset B \rightarrow #B = #N Thm. 6. $\aleph_1 = 2^{\aleph_0}$

Note: 1. specific sets in $L \setminus B$ difficult to give. (typical for modern analysis)

2. $m | B$ not complete. Reason: \exists subsets of C, not in B. ($\because \#2^C = 2^{\aleph_1} > \aleph_1 = \# B$)

3. *m* is the completion of $m | B$. (see below)

A O

E

Then $E \in L \Leftrightarrow \forall \varepsilon > 0$, \exists open $O \supseteq E$ \Rightarrow $m^*(O \setminus E) < \varepsilon$ $\forall \Leftarrow$ " Check: $m^*(A) \ge m^*(A \cap E) + m^*(A \setminus E) \quad \forall A \subseteq \mathbb{R}$ Thm 1. $E \subseteq \mathbb{R}$ (cf. Royden, p. 62) Pf. " \Rightarrow "(Ex. 1.9.7) $\therefore m^*(A) = m^*(A \cap O) + m^*(A \setminus O)$ $m^*(A \cap E)$ $m^*(A \setminus E)$ - $m^*(O \setminus E)$ $\geq m^*(A \setminus E)$ - ε \vee' $\qquad \qquad \vee'$ \therefore $O \in L$ \vee / \therefore $m^*(A \setminus E) \leq m^*(A \setminus O) + m^*(O \setminus E)$ \Rightarrow $m^*(A) \ge m^*(A \cap E) + m^*(A \setminus E) - \varepsilon$ $\therefore A \setminus E \subseteq (A \setminus O) \cup (O \setminus E)$ Let $\varepsilon \to 0$ Then $E \in L \Leftrightarrow \forall \varepsilon > 0$, \exists closed $F \subseteq E \ni m^*(E \setminus F) < \varepsilon$ Pf. " \Rightarrow " $E \in L \Rightarrow E^c \in L$ Apply Thm 3 to $E^c \Rightarrow \exists$ open $O \supseteq E^c \Rightarrow m^*(O \setminus E^c) < \varepsilon$ $E \supseteq O^c \ni m^*(E \setminus F) = m^*(E \setminus O^c) = m^*(O \setminus E^c) < \varepsilon$ Thm 2. $E \subseteq \mathbb{R}$ ||| || || $F \qquad \qquad E \cap O = O \cap (E^c)^c$ closed $" \leftarrow"$ Check: $E^c \in L$ by reversing above arguments. Thm $3. A \subseteq \mathbb{R}$ Then $A \in L \Leftrightarrow A = C \cup N$, where $C \in B$, $N \in L$ & $m(N) = 0$ Pf. " \Leftarrow " trivial $" \Rightarrow$ " (Ex. 1.9.8) Thm 2. $\Rightarrow \forall n \geq 1, \exists \text{ closed } F_n \Rightarrow F_n \subseteq A \& m^*(A \setminus F_n) < \frac{1}{n}$ 1 Let $C = \bigcup_{n=1}^{\infty} F_n \in B$, *n* $C = \bigcup_{n=0}^{\infty} F_n \in B$, $C \subseteq A$ $=\bigcup_{n=1}^{\infty}F_n\in B, C\subseteq$ $\Rightarrow \forall n \geq 1, \exists \text{ closed } F_n \ni F_n \subseteq A \& m^*(A \setminus F_n)$ Let $N = A \setminus C \in L$ $m(N) = m(A \setminus C) \le m(A \setminus F_n) < \frac{1}{n} \quad \forall n \ge 1$ \Rightarrow *m*(*N*) = 0 *n* $=m(A\setminus C)\leq m(A\setminus F_n)<\frac{1}{\lambda}$ $\forall n\geq$

Note.1. *m* is the completion of $m | B \& B = L$ 2. Thm's 1-3 true for \mathbb{R}^n Littlewood principles (Royden, p. 72, Sec. 3.6) *C* Principle I: $A \in L \Leftrightarrow A \sim \bigcup_{i=1}^{n} I_i$ $\in L \Leftrightarrow A \sim \bigcup_{i=1}^{\infty}$ $A \in L \Longleftrightarrow A \sim \bigcup I$ *Fn* 1 Thm 4. $E \subseteq \mathbb{R}$, $m^*(E) < \infty$. (Royden, p. 63) Then $E \in L \Leftrightarrow \forall \varepsilon > 0$, \exists finite open intervals $\{I_i\}_{i=1}^n \ni m^*(E \triangle (U_i))$ ${I_i}_{i=1}^n$ > m^{*} $E \in L \Leftrightarrow \forall \varepsilon > 0$, \exists finite open intervals $\left\{I_i\right\}_{i=1}^n \ni m^*(E_{\Delta}(\bigcup_{i=1}^n I_i)) < \varepsilon$ 1^{1} \cdots (22) Pf. $" \Rightarrow$ ": Thm $1 \Rightarrow \forall \varepsilon > 0$, \exists open $O \supseteq E$ \Rightarrow $m(O \setminus E) < \varepsilon$ Note: $O \subseteq \mathbb{R}$, O open $\Leftrightarrow O = \bigcup_{n=1}^{\infty} I_n$, where $\{I_n\}$ disjoint open intervals. $\subseteq \mathbb{R}$, O open \Leftrightarrow $O = \bigcup_{n=1}$ ${I_n}$ 1 Pf. " \Leftarrow ": trivial $"\Rightarrow"$: Define $x \sim y$ if $xy \subseteq O$ for $x, y \in O$. Then"~" equivalence relation. Eac h equivalence class is an open interval \Rightarrow *O* = \bigcup_{α} \therefore Correspond each I_{α} to different rational no. in I_{α} . \Rightarrow { I_{α} } countably many $\therefore O = \bigcup_{n=1}^{\infty} I_n.$ $\therefore O = \bigcup_{n=1}$ $\setminus \bigcup_{i}^{n}$ - 32, 4대 (삼) $\bigcirc \bigcirc \bigcup_{i=1}^{n} V_i$ $O \setminus \overline{\cup I_i} \downarrow \phi$ $\bigcup_{i=1}^{\mathbf{L}} i$ 1 $\Rightarrow m(O \setminus (\bigcup_{i=1}^{n})) < \varepsilon$ for large $\Rightarrow m(O \setminus (\bigcup_{i=1}^{n} I_i))$ $m(O \setminus (\bigcup_i)) < \varepsilon$ for large *n* $\bigcup_{i=1}^{\mathbf{L}} i$ 1 $\Rightarrow m(E_{\Delta}(\bigcup_{i=1}^{n})) \le m(E \setminus (\bigcup_{i=1}^{n})) + m((\bigcup_{i=1}^{n}) \setminus E)$ $\Rightarrow m(E \triangle (U_i)) \le m(E \setminus (U_i)) + m((U_i))$ $m(E \triangle (\bigcup I_i)) \le m(E \setminus (\bigcup I_i)) + m(\bigcup I_i) \setminus E$ *i ii i ii* 1 \wedge \wedge \wedge \wedge $m(O \setminus (\bigcup_i I_i))$ $m(O \setminus (\bigcup$ $m(O \setminus E)$ \wedge ε ε " \Leftarrow " as in Thm 1.

Homework: Ex 1.9.7, 1.9.14, 1.9.15

