1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
| """ Copyright, Rinat Maksutov, 2017. License: GNU General Public License """
import numpy as np import pandas as pd
""" Exponential moving average Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:moving_averages Params: data: pandas DataFrame period: smoothing period column: the name of the column with values for calculating EMA in the 'data' DataFrame Returns: copy of 'data' DataFrame with 'ema[period]' column added """ def ema(data, period=0, column='<CLOSE>'): data['ema' + str(period)] = data[column].ewm(ignore_na=False, min_periods=period, com=period, adjust=True).mean() return data
""" Moving Average Convergence/Divergence Oscillator (MACD) Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:moving_average_convergence_divergence_macd Params: data: pandas DataFrame period_long: the longer period EMA (26 days recommended) period_short: the shorter period EMA (12 days recommended) period_signal: signal line EMA (9 days recommended) column: the name of the column with values for calculating MACD in the 'data' DataFrame Returns: copy of 'data' DataFrame with 'macd_val' and 'macd_signal_line' columns added """ def macd(data, period_long=26, period_short=12, period_signal=9, column='<CLOSE>'): remove_cols = [] if not 'ema' + str(period_long) in data.columns: data = ema(data, period_long) remove_cols.append('ema' + str(period_long))
if not 'ema' + str(period_short) in data.columns: data = ema(data, period_short) remove_cols.append('ema' + str(period_short))
data['macd_val'] = data['ema' + str(period_short)] - data['ema' + str(period_long)] data['macd_signal_line'] = data['macd_val'].ewm(ignore_na=False, min_periods=0, com=period_signal, adjust=True).mean()
data = data.drop(remove_cols, axis=1) return data
""" Accumulation Distribution Source: http://stockcharts.com/school/doku.php?st=accumulation+distribution&id=chart_school:technical_indicators:accumulation_distribution_line Params: data: pandas DataFrame trend_periods: the over which to calculate AD open_col: the name of the OPEN values column high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'acc_dist' and 'acc_dist_ema[trend_periods]' columns added """ def acc_dist(data, trend_periods=21, open_col='<OPEN>', high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>', vol_col='<VOL>'): for index, row in data.iterrows(): if row[high_col] != row[low_col]: ac = ((row[close_col] - row[low_col]) - (row[high_col] - row[close_col])) / (row[high_col] - row[low_col]) * row[vol_col] else: ac = 0 data.set_value(index, 'acc_dist', ac) data['acc_dist_ema' + str(trend_periods)] = data['acc_dist'].ewm(ignore_na=False, min_periods=0, com=trend_periods, adjust=True).mean() return data
""" On Balance Volume (OBV) Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:on_balance_volume_obv Params: data: pandas DataFrame trend_periods: the over which to calculate OBV close_col: the name of the CLOSE values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'obv' and 'obv_ema[trend_periods]' columns added """ def on_balance_volume(data, trend_periods=21, close_col='<CLOSE>', vol_col='<VOL>'): for index, row in data.iterrows(): if index > 0: last_obv = data.at[index - 1, 'obv'] if row[close_col] > data.at[index - 1, close_col]: current_obv = last_obv + row[vol_col] elif row[close_col] < data.at[index - 1, close_col]: current_obv = last_obv - row[vol_col] else: current_obv = last_obv else: last_obv = 0 current_obv = row[vol_col]
data.set_value(index, 'obv', current_obv)
data['obv_ema' + str(trend_periods)] = data['obv'].ewm(ignore_na=False, min_periods=0, com=trend_periods, adjust=True).mean() return data
""" Price-volume trend (PVT) (sometimes volume-price trend) Source: https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend Params: data: pandas DataFrame trend_periods: the over which to calculate PVT close_col: the name of the CLOSE values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'pvt' and 'pvt_ema[trend_periods]' columns added """ def price_volume_trend(data, trend_periods=21, close_col='<CLOSE>', vol_col='<VOL>'): for index, row in data.iterrows(): if index > 0: last_val = data.at[index - 1, 'pvt'] last_close = data.at[index - 1, close_col] today_close = row[close_col] today_vol = row[vol_col] current_val = last_val + (today_vol * (today_close - last_close) / last_close) else: current_val = row[vol_col]
data.set_value(index, 'pvt', current_val)
data['pvt_ema' + str(trend_periods)] = data['pvt'].ewm(ignore_na=False, min_periods=0, com=trend_periods, adjust=True).mean() return data
""" Average true range (ATR) Source: https://en.wikipedia.org/wiki/Average_true_range Params: data: pandas DataFrame trend_periods: the over which to calculate ATR open_col: the name of the OPEN values column high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column vol_col: the name of the VOL values column drop_tr: whether to drop the True Range values column from the resulting DataFrame Returns: copy of 'data' DataFrame with 'atr' (and 'true_range' if 'drop_tr' == True) column(s) added """ def average_true_range(data, trend_periods=14, open_col='<OPEN>', high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>', drop_tr = True): for index, row in data.iterrows(): prices = [row[high_col], row[low_col], row[close_col], row[open_col]] if index > 0: val1 = np.amax(prices) - np.amin(prices) val2 = abs(np.amax(prices) - data.at[index - 1, close_col]) val3 = abs(np.amin(prices) - data.at[index - 1, close_col]) true_range = np.amax([val1, val2, val3])
else: true_range = np.amax(prices) - np.amin(prices)
data.set_value(index, 'true_range', true_range) data['atr'] = data['true_range'].ewm(ignore_na=False, min_periods=0, com=trend_periods, adjust=True).mean() if drop_tr: data = data.drop(['true_range'], axis=1) return data
""" Bollinger Bands Source: https://en.wikipedia.org/wiki/Bollinger_Bands Params: data: pandas DataFrame trend_periods: the over which to calculate BB close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'bol_bands_middle', 'bol_bands_upper' and 'bol_bands_lower' columns added """ def bollinger_bands(data, trend_periods=20, close_col='<CLOSE>'):
data['bol_bands_middle'] = data[close_col].ewm(ignore_na=False, min_periods=0, com=trend_periods, adjust=True).mean() for index, row in data.iterrows():
s = data[close_col].iloc[index - trend_periods: index] sums = 0 middle_band = data.at[index, 'bol_bands_middle'] for e in s: sums += np.square(e - middle_band)
std = np.sqrt(sums / trend_periods) d = 2 upper_band = middle_band + (d * std) lower_band = middle_band - (d * std)
data.set_value(index, 'bol_bands_upper', upper_band) data.set_value(index, 'bol_bands_lower', lower_band)
return data
""" Chaikin Oscillator Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_oscillator Params: data: pandas DataFrame periods_short: period for the shorter EMA (3 days recommended) periods_long: period for the longer EMA (10 days recommended) high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'ch_osc' column added """ def chaikin_oscillator(data, periods_short=3, periods_long=10, high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>', vol_col='<VOL>'): ac = pd.Series([]) val_last = 0 for index, row in data.iterrows(): if row[high_col] != row[low_col]: val = val_last + ((row[close_col] - row[low_col]) - (row[high_col] - row[close_col])) / (row[high_col] - row[low_col]) * row[vol_col] else: val = val_last ac.set_value(index, val) val_last = val
ema_long = ac.ewm(ignore_na=False, min_periods=0, com=periods_long, adjust=True).mean() ema_short = ac.ewm(ignore_na=False, min_periods=0, com=periods_short, adjust=True).mean() data['ch_osc'] = ema_short - ema_long
return data
""" Typical Price Source: https://en.wikipedia.org/wiki/Typical_price Params: data: pandas DataFrame high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'typical_price' column added """ def typical_price(data, high_col = '<HIGH>', low_col = '<LOW>', close_col = '<CLOSE>'): data['typical_price'] = (data[high_col] + data[low_col] + data[close_col]) / 3
return data
""" Ease of Movement Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ease_of_movement_emv Params: data: pandas DataFrame period: period for calculating EMV high_col: the name of the HIGH values column low_col: the name of the LOW values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'emv' and 'emv_ema_[period]' columns added """ def ease_of_movement(data, period=14, high_col='<HIGH>', low_col='<LOW>', vol_col='<VOL>'): for index, row in data.iterrows(): if index > 0: midpoint_move = (row[high_col] + row[low_col]) / 2 - (data.at[index - 1, high_col] + data.at[index - 1, low_col]) / 2 else: midpoint_move = 0 diff = row[high_col] - row[low_col] if diff == 0: diff = 0.000000001 vol = row[vol_col] if vol == 0: vol = 1 box_ratio = (vol / 100000000) / (diff) emv = midpoint_move / box_ratio data.set_value(index, 'emv', emv) data['emv_ema_'+str(period)] = data['emv'].ewm(ignore_na=False, min_periods=0, com=period, adjust=True).mean() return data
""" Mass Index Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:mass_index Params: data: pandas DataFrame period: period for calculating MI (9 days recommended) high_col: the name of the HIGH values column low_col: the name of the LOW values column Returns: copy of 'data' DataFrame with 'mass_index' column added """ def mass_index(data, period=25, ema_period=9, high_col='<HIGH>', low_col='<LOW>'): high_low = data[high_col] - data[low_col] + 0.000001 ema = high_low.ewm(ignore_na=False, min_periods=0, com=ema_period, adjust=True).mean() ema_ema = ema.ewm(ignore_na=False, min_periods=0, com=ema_period, adjust=True).mean() div = ema / ema_ema
for index, row in data.iterrows(): if index >= period: val = div[index-25:index].sum() else: val = 0 data.set_value(index, 'mass_index', val) return data
""" Average directional movement index Source: https://en.wikipedia.org/wiki/Average_directional_movement_index Params: data: pandas DataFrame periods: period for calculating ADX (14 days recommended) high_col: the name of the HIGH values column low_col: the name of the LOW values column Returns: copy of 'data' DataFrame with 'adx', 'dxi', 'di_plus', 'di_minus' columns added """ def directional_movement_index(data, periods=14, high_col='<HIGH>', low_col='<LOW>'): remove_tr_col = False if not 'true_range' in data.columns: data = average_true_range(data, drop_tr = False) remove_tr_col = True
data['m_plus'] = 0. data['m_minus'] = 0. for i,row in data.iterrows(): if i>0: data.set_value(i, 'm_plus', row[high_col] - data.at[i-1, high_col]) data.set_value(i, 'm_minus', row[low_col] - data.at[i-1, low_col]) data['dm_plus'] = 0. data['dm_minus'] = 0. for i,row in data.iterrows(): if row['m_plus'] > row['m_minus'] and row['m_plus'] > 0: data.set_value(i, 'dm_plus', row['m_plus']) if row['m_minus'] > row['m_plus'] and row['m_minus'] > 0: data.set_value(i, 'dm_minus', row['m_minus']) data['di_plus'] = (data['dm_plus'] / data['true_range']).ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() data['di_minus'] = (data['dm_minus'] / data['true_range']).ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() data['dxi'] = np.abs(data['di_plus'] - data['di_minus']) / (data['di_plus'] + data['di_minus']) data.set_value(0, 'dxi',1.) data['adx'] = data['dxi'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() data = data.drop(['m_plus', 'm_minus', 'dm_plus', 'dm_minus'], axis=1) if remove_tr_col: data = data.drop(['true_range'], axis=1) return data
""" Money Flow Index (MFI) Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi Params: data: pandas DataFrame periods: period for calculating MFI (14 days recommended) vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'money_flow_index' column added """ def money_flow_index(data, periods=14, vol_col='<VOL>'): remove_tp_col = False if not 'typical_price' in data.columns: data = typical_price(data) remove_tp_col = True data['money_flow'] = data['typical_price'] * data[vol_col] data['money_ratio'] = 0. data['money_flow_index'] = 0. data['money_flow_positive'] = 0. data['money_flow_negative'] = 0. for index,row in data.iterrows(): if index > 0: if row['typical_price'] < data.at[index-1, 'typical_price']: data.set_value(index, 'money_flow_positive', row['money_flow']) else: data.set_value(index, 'money_flow_negative', row['money_flow']) if index >= periods: period_slice = data['money_flow'][index-periods:index] positive_sum = data['money_flow_positive'][index-periods:index].sum() negative_sum = data['money_flow_negative'][index-periods:index].sum()
if negative_sum == 0.: negative_sum = 0.00001 m_r = positive_sum / negative_sum
mfi = 1-(1 / (1 + m_r))
data.set_value(index, 'money_ratio', m_r) data.set_value(index, 'money_flow_index', mfi) data = data.drop(['money_flow', 'money_ratio', 'money_flow_positive', 'money_flow_negative'], axis=1) if remove_tp_col: data = data.drop(['typical_price'], axis=1)
return data
""" Negative Volume Index (NVI) Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde Params: data: pandas DataFrame periods: period for calculating NVI (255 days recommended) close_col: the name of the CLOSE values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'nvi' and 'nvi_ema' columns added """ def negative_volume_index(data, periods=255, close_col='<CLOSE>', vol_col='<VOL>'): data['nvi'] = 0. for index,row in data.iterrows(): if index > 0: prev_nvi = data.at[index-1, 'nvi'] prev_close = data.at[index-1, close_col] if row[vol_col] < data.at[index-1, vol_col]: nvi = prev_nvi + (row[close_col] - prev_close / prev_close * prev_nvi) else: nvi = prev_nvi else: nvi = 1000 data.set_value(index, 'nvi', nvi) data['nvi_ema'] = data['nvi'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() return data
""" Positive Volume Index (PVI) Source: https://www.equities.com/news/the-secret-to-the-positive-volume-index Params: data: pandas DataFrame periods: period for calculating PVI (255 days recommended) close_col: the name of the CLOSE values column vol_col: the name of the VOL values column Returns: copy of 'data' DataFrame with 'pvi' and 'pvi_ema' columns added """ def positive_volume_index(data, periods=255, close_col='<CLOSE>', vol_col='<VOL>'): data['pvi'] = 0. for index,row in data.iterrows(): if index > 0: prev_pvi = data.at[index-1, 'pvi'] prev_close = data.at[index-1, close_col] if row[vol_col] > data.at[index-1, vol_col]: pvi = prev_pvi + (row[close_col] - prev_close / prev_close * prev_pvi) else: pvi = prev_pvi else: pvi = 1000 data.set_value(index, 'pvi', pvi) data['pvi_ema'] = data['pvi'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean()
return data
""" Momentum Source: https://en.wikipedia.org/wiki/Momentum_(technical_analysis) Params: data: pandas DataFrame periods: period for calculating momentum close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'momentum' column added """ def momentum(data, periods=14, close_col='<CLOSE>'): data['momentum'] = 0. for index,row in data.iterrows(): if index >= periods: prev_close = data.at[index-periods, close_col] val_perc = (row[close_col] - prev_close)/prev_close
data.set_value(index, 'momentum', val_perc)
return data
""" Relative Strenght Index Source: https://en.wikipedia.org/wiki/Relative_strength_index Params: data: pandas DataFrame periods: period for calculating momentum close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'rsi' column added """ def rsi(data, periods=14, close_col='<CLOSE>'): data['rsi_u'] = 0. data['rsi_d'] = 0. data['rsi'] = 0. for index,row in data.iterrows(): if index >= periods: prev_close = data.at[index-periods, close_col] if prev_close < row[close_col]: data.set_value(index, 'rsi_u', row[close_col] - prev_close) elif prev_close > row[close_col]: data.set_value(index, 'rsi_d', prev_close - row[close_col]) data['rsi'] = data['rsi_u'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() / (data['rsi_u'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() + data['rsi_d'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean()) data = data.drop(['rsi_u', 'rsi_d'], axis=1) return data
""" Chaikin Volatility (CV) Source: https://www.marketvolume.com/technicalanalysis/chaikinvolatility.asp Params: data: pandas DataFrame ema_periods: period for smoothing Highest High and Lowest Low difference change_periods: the period for calculating the difference between Highest High and Lowest Low high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'chaikin_volatility' column added """ def chaikin_volatility(data, ema_periods=10, change_periods=10, high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>'): data['ch_vol_hl'] = data[high_col] - data[low_col] data['ch_vol_ema'] = data['ch_vol_hl'].ewm(ignore_na=False, min_periods=0, com=ema_periods, adjust=True).mean() data['chaikin_volatility'] = 0. for index,row in data.iterrows(): if index >= change_periods: prev_value = data.at[index-change_periods, 'ch_vol_ema'] if prev_value == 0: prev_value = 0.0001 data.set_value(index, 'chaikin_volatility', ((row['ch_vol_ema'] - prev_value)/prev_value)) data = data.drop(['ch_vol_hl', 'ch_vol_ema'], axis=1) return data
""" William's Accumulation/Distribution Source: https://www.metastock.com/customer/resources/taaz/?p=125 Params: data: pandas DataFrame high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'williams_ad' column added """ def williams_ad(data, high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>'): data['williams_ad'] = 0. for index,row in data.iterrows(): if index > 0: prev_value = data.at[index-1, 'williams_ad'] prev_close = data.at[index-1, close_col] if row[close_col] > prev_close: ad = row[close_col] - min(prev_close, row[low_col]) elif row[close_col] < prev_close: ad = row[close_col] - max(prev_close, row[high_col]) else: ad = 0. data.set_value(index, 'williams_ad', (ad+prev_value)) return data
""" William's % R Source: https://www.metastock.com/customer/resources/taaz/?p=126 Params: data: pandas DataFrame periods: the period over which to calculate the indicator value high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'williams_r' column added """ def williams_r(data, periods=14, high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>'): data['williams_r'] = 0. for index,row in data.iterrows(): if index > periods: data.set_value(index, 'williams_r', ((max(data[high_col][index-periods:index]) - row[close_col]) / (max(data[high_col][index-periods:index]) - min(data[low_col][index-periods:index])))) return data
""" TRIX Source: https://www.metastock.com/customer/resources/taaz/?p=114 Params: data: pandas DataFrame periods: the period over which to calculate the indicator value signal_periods: the period for signal moving average close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'trix' and 'trix_signal' columns added """ def trix(data, periods=14, signal_periods=9, close_col='<CLOSE>'): data['trix'] = data[close_col].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() data['trix'] = data['trix'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() data['trix'] = data['trix'].ewm(ignore_na=False, min_periods=0, com=periods, adjust=True).mean() data['trix_signal'] = data['trix'].ewm(ignore_na=False, min_periods=0, com=signal_periods, adjust=True).mean() return data
""" Ultimate Oscillator Source: http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:ultimate_oscillator Params: data: pandas DataFrame period_1: the period of the first average (7 days recommended) period_2: the period of the second average (14 days recommended) period_3: the period of the third average (28 days recommended) high_col: the name of the HIGH values column low_col: the name of the LOW values column close_col: the name of the CLOSE values column Returns: copy of 'data' DataFrame with 'ultimate_oscillator' column added """ def ultimate_oscillator(data, period_1=7,period_2=14, period_3=28, high_col='<HIGH>', low_col='<LOW>', close_col='<CLOSE>'): data['ultimate_oscillator'] = 0. data['uo_bp'] = 0. data['uo_tr'] = 0. data['uo_avg_1'] = 0. data['uo_avg_2'] = 0. data['uo_avg_3'] = 0.
for index,row in data.iterrows(): if index > 0: bp = row[close_col] - min(row[low_col], data.at[index-1, close_col]) tr = max(row[high_col], data.at[index-1, close_col]) - min(row[low_col], data.at[index-1, close_col]) data.set_value(index, 'uo_bp', bp) data.set_value(index, 'uo_tr', tr) if index >= period_1: uo_avg_1 = sum(data['uo_bp'][index-period_1:index]) / sum(data['uo_tr'][index-period_1:index]) data.set_value(index, 'uo_avg_1', uo_avg_1) if index >= period_2: uo_avg_2 = sum(data['uo_bp'][index-period_2:index]) / sum(data['uo_tr'][index-period_2:index]) data.set_value(index, 'uo_avg_2', uo_avg_2) if index >= period_3: uo_avg_3 = sum(data['uo_bp'][index-period_3:index]) / sum(data['uo_tr'][index-period_3:index]) data.set_value(index, 'uo_avg_3', uo_avg_3) uo = (4 * uo_avg_1 + 2 * uo_avg_2 + uo_avg_3) / 7 data.set_value(index, 'ultimate_oscillator', uo)
data = data.drop(['uo_bp', 'uo_tr', 'uo_avg_1', 'uo_avg_2', 'uo_avg_3'], axis=1) return data
|